Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rổng quát, Nếu:
\(A=\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+...+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\) (a;b \(\in\) N*)
\(a^{2.k}.A=1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+...+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\)
\(a^{2.k}.A+A=\left(1-\frac{1}{a^{2.k}}+\frac{1}{a^{2.\left(k+1\right)}}-\frac{1}{a^{2.\left(k+2\right)}}+..+\frac{1}{a^{2.\left(k+n-1\right)}}-\frac{1}{a^{2.\left(k+n\right)}}\right)-\left(\frac{1}{a^{2.k}}-\frac{1}{a^{2.\left(k+1\right)}}+\frac{1}{a^{2.\left(k+2\right)}}-\frac{1}{a^{2.\left(k+3\right)}}+..+\frac{1}{a^{2.\left(k+n\right)}}-\frac{1}{a^{2.\left(k+n+1\right)}}\right)\)
\(A.\left(a^{2.k}+1\right)=1-\frac{1}{a^{2.\left(k+n+1\right)}}< 1\)
\(A< \frac{1}{a^{2.k}+1}\)
Áp dụng vào bài toán dễ thấy a = 3; k = 1
Như vậy, \(A< \frac{1}{3^{2.1}+1}=\frac{1}{3^2+1}=\frac{1}{9+1}=\frac{1}{10}=0,1\left(đpcm\right)\)
\(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{2014}}-\frac{1}{3^{2016}}\)
\(\Rightarrow9A=1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{2012}}-\frac{1}{3^{2014}}\)
\(\Rightarrow10A=1-\frac{1}{3^{2016}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{2016}}}{10}\)
Vì 0,1 = \(\frac{1}{10}\) nên \(\frac{1-\frac{1}{3^{2016}}}{10}< \frac{1}{10}\) hay A < 0,1
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)
Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100
=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)
=7/12+(1/5.6+...+1/99.100)>7/12(1)
A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100
=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)
=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100) ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)
=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)
=1/51+1/52+..+1/100
Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm
A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)
<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6
=>A<5/6(2)
từ 1 và 2 => đpcm
\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)
\(2^2.A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)
\(2^2.A-A=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\right)\)
\(4.A-A=1-\frac{1}{2^{100}}< 1\)
\(3A< 1\)
\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)
mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho
Bạn ghi nhỏ lại nhé. Hơn nũa bạn nên tách riêng từng câu hỏi, làm vầy nhiều lắm
B1 : S = 1 + 2 + 2^2 + 2^3 + ... + 2^2008 / 1 - 2^2009
Đặt A = 1 + 2 + 2^2 + 2^3 + ... + 2^2008
2A = 2 + 2^2 + 2^3 + 2^3 + 2^4 + ... + 2^2009
2A - A = ( 2 + 2^2 + 2^3 + 2^4 + ... + 2^2009 ) - ( 1 + 2 + 2^2 + 2^3 + ... + 2^2008 )
A = 2^2009 - 1
S = 2^2009 - 1 / 1 - 2^2009
S = -1
\(3^2A=1-\dfrac{1}{3^2}+\dfrac{1}{3^4}-...-\dfrac{1}{3^{98}}\)
\(9A+A=1-\dfrac{1}{3^2}+\dfrac{1}{3^4}-...-\dfrac{1}{3^{98}}+\dfrac{1}{3^2}-\dfrac{1}{3^4}+\dfrac{1}{3^6}-...-\dfrac{1}{3^{100}}\)
\(10A=1-\dfrac{1}{3^{100}}\)
\(A=\dfrac{1}{10}-\dfrac{1}{10\cdot3^{100}}< 0,1\)
Vậy A<0,1