K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3
  1. Chứng minh tứ giác OMAN nội tiếp:

Để chứng minh tứ giác OMAN nội tiếp, ta cần chứng minh tổng hai góc đối nhau bằng 180 độ.

Ta có:

  • Góc OAN = 90 độ (vì AN là tiếp tuyến của đường tròn tại N)
  • Góc OMA = 90 độ (vì AM là tiếp tuyến của đường tròn tại M)

Vậy, góc OAN + góc OMA = 90 độ + 90 độ = 180 độ.

Tương tự, ta cũng có góc MAN + góc MOA = 180 độ.

Vậy, tứ giác OMAN nội tiếp.

  1. Tính diện tích phần tứ giác nằm ngoài hình tròn theo R, biết OA = 2R:

Diện tích phần tứ giác nằm ngoài hình tròn là diện tích tam giác OAN trừ đi diện tích phần hình tròn OAN.

Diện tích tam giác OAN = 1/2 * OA * ON = 1/2 * 2R * R = R^2.

Góc AON = 90 độ (vì AN là tiếp tuyến của đường tròn tại N), nên diện tích phần hình tròn OAN = 1/4 * pi * R^2.

Vậy, diện tích phần tứ giác nằm ngoài hình tròn = R^2 - 1/4 * pi * R^2.

Thích bn nhé!

a: Xét (O) có 

AB là tiếp tuyến có B là tiếp điểm

AC là tiếp tuyến có C là tiếp điểm

Do đó: AB=AC

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(1)

ta có: BA=AC

nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

hay OA⊥BC

 

Xét tứ giác SAOB có \(\widehat{OAS}+\widehat{OBS}=180^0\)

nên SAOB là tứ giác nội tiếp

19 tháng 4 2022

giúp mình với ạ

a: góc ABO+góc ACO=90+90=180 độ

=>ABOC nội tiếp

b: Xét ΔABM và ΔANB có

góc ABM=góc ANB

góc BAM chung

=>ΔABM đồng dạng với ΔANB

=>AB/AN=AM/AB

=>AB^2=AN*AM

24 tháng 9 2017

a, Chứng minh được DBOF nội tiếp đường tròn tâm I là trung điểm của DO

b,  O A = O F 2 + A F 2 = 5 R 3 =>  cos D A B ^ = A F A O = 4 5

c, ∆AMO:∆ADB(g.g) =>  D M A M = O B O A

mà M O D ^ = O D B ^ = O D M ^ => DM = OM

=>  D B D M = D B O M = A D A M . Xét vế trái  B D D M - D M A M = A D - D M A M = 1

d,  D B = A B . tan D A B ^ = 8 R 3 . 3 4 = 2 R => O M = A O . tan D A B ^ = 5 R 4

=>  S O M D B = 13 R 2 8

S O M D B ngoài = S O M D B - 1 4 S O , R = R 2 8 13 - 2 π