Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy bài này bạn tự làm đi, chuyển vế tìm x gần giống cấp I mà.
b)\(\dfrac{-3}{5}.x=\dfrac{1}{4}+0,75\)
=>\(\dfrac{-3}{5}.x=1\)
=>\(x=1:\dfrac{-3}{5}\)
=>\(x=\dfrac{-5}{3}\)
Vậy \(x=\dfrac{-5}{3}\)
1. x3 - \(\dfrac{4}{25}\)x = 0
<=> x(x2 - \(\dfrac{4}{25}\)) = 0
<=> \(\left[{}\begin{matrix}x=0\\x^2-\dfrac{4}{25}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{4}{25}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{5}\end{matrix}\right.\) (thỏa mãn)
Vậy x = 0; 2/5
@Phan Đức Gia Linh
1 ) \(x^3-\dfrac{4}{25}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{4}{25}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-\dfrac{4}{25}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left[{}\begin{matrix}x-\dfrac{2}{5}=0\\x+\dfrac{2}{5}=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{2}{5}\end{matrix}\right.\)
Vậy .............
2 ) \(3^{4x+4}=9^{x+2}\)
\(\Leftrightarrow3^{4x+4}=\left(3^2\right)^{x+2}\)
\(\Leftrightarrow4x+4=2x+4\)
\(\Leftrightarrow2x=0\Leftrightarrow x=0.\)
3 ) \(3\left(\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{97.100}\right)=\dfrac{319}{100}\) ( thiếu đề hay sao )
4 ) \(\left(6-x\right)^{2014}=\left(6-x\right)^{2015}\)
\(\Leftrightarrow\left(6-x\right)^{2014}-\left(6-x\right)^{2015}=0\)
\(\Leftrightarrow\left(6-x\right)^{2014}\left(1-6+x\right)=0\)
\(\Leftrightarrow\left(6-x\right)^{2014}\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(6-x\right)^{2014}=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=5\end{matrix}\right.\)
Vậy ......
5) \(2+4+6+...+2x=210\)
\(\Leftrightarrow2.1+2.2+2.3+...+2.x=210\)
\(\Leftrightarrow2\left(1+2+3+...+x\right)=210\)
\(\Leftrightarrow1+2+3+...+x=105\)
\(\Leftrightarrow\dfrac{\left(x+1\right).x}{2}=105\)
\(\Leftrightarrow x\left(x+1\right)=210\)
Ta lại có : \(x\left(x+1\right)=14\left(14+1\right)\)
\(\Leftrightarrow x=14\)
Vậy ......
6 ) \(\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+..+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{3.7}+\dfrac{1}{4.7}+\dfrac{1}{4.7}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{2.3.7}+\dfrac{2}{2.4.7}+\dfrac{2}{2.4.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{2}{6.7}+\dfrac{2}{8.7}+\dfrac{2}{8.9}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2}{9}\)
\(\Leftrightarrow2\left(\dfrac{1}{6.7}+\dfrac{1}{8.7}+\dfrac{1}{8.9}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow2.\left(\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{7}+\dfrac{1}{8}-\dfrac{1}{9}+...+\dfrac{1}{\dfrac{x-1}{x+1}}\right)=\dfrac{2}{9}\)
\(\Leftrightarrow\dfrac{1}{6}+\dfrac{1}{x+1}=\dfrac{1}{9}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{18}\)
\(\Leftrightarrow x=17.\)
Vậy ...........
\(\)
1. Tìm \(x\):
a) \(\dfrac{x}{5}=\dfrac{5}{6}+\dfrac{-19}{30}\)
\(\dfrac{x}{5}=\dfrac{1}{5}\)
\(\Rightarrow x=1\)
b) \(\dfrac{-5}{6}-x=\dfrac{7}{12}-\dfrac{1}{3}.x\)
\(\dfrac{-5}{6}-\dfrac{7}{12}=x-\dfrac{1}{3}.x\)
\(x-\dfrac{1}{3}.x=\dfrac{-17}{12}\)
\(\dfrac{2}{3}.x=\dfrac{-17}{12}\)
\(x=\dfrac{-17}{12}:\dfrac{2}{3}\)
\(x=\dfrac{-17}{8}\)
c) \(2016^3.2016^x=2016^8\)
\(2016^x=2016^8:2016^3\)
\(2016^x=2016^{8-3}\)
\(2016^x=2016^5\)
\(\Rightarrow x=5\)
d) \(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=3\dfrac{1}{2}\)
\(\left(x+\dfrac{3}{4}\right):\dfrac{5}{2}=\dfrac{7}{2}\)
\(\left(x+\dfrac{3}{4}\right)=\dfrac{7}{2}.\dfrac{5}{2}\)
\(x+\dfrac{3}{4}=\dfrac{35}{4}\)
\(x=\dfrac{35}{4}-\dfrac{3}{4}\)
\(x=\dfrac{32}{4}=8\)
e) \(\left(2,8.x-2^5\right):\dfrac{2}{3}=3^2\)
\(\left(2,8.x-2^5\right)=9.\dfrac{2}{3}\)
\(2,8.x-2^5=6\)
\(2,8.x=6+32\)
\(2,8.x=38\)
\(x=38:2,8\)
\(x=\dfrac{95}{7}\)
f) \(\dfrac{4}{7}.x-\dfrac{2}{3}=\dfrac{2}{5}\)
\(\dfrac{4}{7}.x=\dfrac{2}{5}+\dfrac{2}{3}\)
\(\dfrac{4}{7}.x=\dfrac{16}{15}\)
\(x=\dfrac{16}{15}:\dfrac{4}{7}\)
\(x=\dfrac{28}{15}\)
g) \(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{28}\)
\(\left(\dfrac{3x}{7}+1\right)=\dfrac{-1}{28}.\left(-4\right)\)
\(\dfrac{3x}{7}+1=\dfrac{1}{7}\)
\(\dfrac{3x}{7}=\dfrac{1}{7}-1\)
\(\dfrac{3x}{7}=\dfrac{-6}{7}\)
\(\Rightarrow3x=-6\)
\(x=\left(-6\right):3\)
\(x=-2\)
2. Thực hiện phép tính:
a) \(\dfrac{1}{2}+\dfrac{1}{2}.\dfrac{2}{3}-\dfrac{1}{3}:\dfrac{3}{4}+1\dfrac{4}{5}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{3}+1\right)-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{1}{2}.\dfrac{5}{3}-\dfrac{1}{3}:\dfrac{3}{4}+\dfrac{9}{5}\)
\(=\dfrac{5}{6}-\dfrac{4}{9}+\dfrac{9}{5}\)
\(=\dfrac{7}{18}+\dfrac{9}{5}\)
\(=\dfrac{197}{90}\)
b) \(\dfrac{7.5^2-7^2}{7.24+21}\)
\(=\dfrac{7.25-7.7}{7.24+7.3}\)
\(=\dfrac{7.\left(25-7\right)}{7.\left(24+3\right)}\)
\(=\dfrac{7.18}{7.27}\)
\(=\dfrac{2}{3}\)
c) \(\dfrac{2}{3}+\dfrac{1}{3}.\left(\dfrac{-4}{9}+\dfrac{5}{6}\right):\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{1}{3}.\dfrac{7}{18}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{7}{54}:\dfrac{7}{12}\)
\(=\dfrac{2}{3}+\dfrac{2}{9}\)
\(=\dfrac{8}{9}\)
\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)
\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)
\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)
\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)
\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)
\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)
B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)
B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)
B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)
B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)
B = 12 . \(\dfrac{2}{13}\)
B = \(\dfrac{24}{13}\)
a, (x + 1) + (x + 4) + ... + (x + 28) = 155
x + 1 + x + 4 + ... + x + 28 = 155
(x + x + x + ... + x) + (1 + 4 + ... + 28) = 155
x . 10 + 145 = 155
x . 10 = 155 - 145
x . 10 = 10
x = 10 : 10
x = 1
Bài 1:
a, \(\left(x-2\right)^2=9\)
\(\Rightarrow x-2\in\left\{-3;3\right\}\Rightarrow x\in\left\{-1;5\right\}\)
b, \(\left(3x-1\right)^3=-8\)
\(\Rightarrow3x-1=-2\Rightarrow3x=-1\)
\(\Rightarrow x=-\dfrac{1}{3}\)
c, \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)
\(\Rightarrow x+\dfrac{1}{2}\in\left\{-\dfrac{1}{4};\dfrac{1}{4}\right\}\)
\(\Rightarrow x\in\left\{-\dfrac{3}{4};-\dfrac{1}{4}\right\}\)
d, \(\left(\dfrac{2}{3}\right)^x=\dfrac{4}{9}\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^2\)
Vì \(\dfrac{2}{3}\ne\pm1;\dfrac{2}{3}\ne0\) nên \(x=2\)
e, \(\left(\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{16}\)
\(\Rightarrow\left(\dfrac{1}{2}\right)^{x-1}=\left(\dfrac{1}{2}\right)^4\)
Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(x-1=4\Rightarrow x=5\)
f, \(\left(\dfrac{1}{2}\right)^{2x-1}=8\) \(\Rightarrow\left(\dfrac{1}{2}\right)^{2x-1}=\left(\dfrac{1}{2}\right)^{-3}\) Vì \(\dfrac{1}{2}\ne\pm1;\dfrac{1}{2}\ne0\) nên \(2x-1=-3\) \(\Rightarrow2x=-2\Rightarrow x=-1\) Chúc bạn học tốt!!!
Lời giải:
Sửa đề: $x(x+1)$ thay vì $x(x+2)$.
$\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x(x+1)}=\frac{2}{9}$
$\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+....+\frac{2}{x(x+1)}=\frac{2}{9}$
$2\left[\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+...+\frac{1}{x(x+1)}\right]=\frac{2}{9}$
$\frac{7-6}{6.7}+\frac{8-7}{7.8}+\frac{9-8}{8.9}+...+\frac{(x+1)-x}{x(x+1)}=\frac{1}{9}$
$\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}$
$\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}$
$\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}$
$\Rightarrow x+1=18$
$\Rightarrow x=17$
11h kém 15ph=10h 45ph
10h 45ph-9h 25ph=1h20ph