K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

A = 1 + 3 + 32 + 33 + ... + 32021

= (1 + 3) + 32(1 + 3) + .... + 32020(1 + 3) 

= (1 + 3)(1 + 32 + ... + 32020

= 4(1 + 32 + ... + 32020\(⋮\)4 (ĐPCM) 

21 tháng 12 2016

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32) + (33 + 34) + ... + (32015 + 32016)

A = 3(1 + 3) + 33(1 + 3) + ... + 32015(1 + 3)

A = 3.4 + 33.4 + ... + 32015.4

A = 4(3 + 33 + ... + 32015)

Vì 4(3 + 33 + ... + 32015) \(⋮\) 4 nên A \(⋮\) 4

Vậy A \(⋮\) 4

A = 3 + 32 + 33 + 34 + ... + 32015 + 32016

A = (3 + 32 + 33) + (34 + 35 + 36) + ... + (32014 + 32015 + 32016)

A = 3(1 + 3 + 32) + 34(1 + 3 + 32) + ... + 32014(1 + 3 + 32)

A = 3.13 + 34.13 + ... + 32014.13

A = 13(3 + 34 + ... + 32014)

Vì 13(3 + 34 + ... + 32014) \(⋮\) 13 nên A \(⋮\) 13

Vậy A \(⋮\) 13

21 tháng 12 2016

thanks

 

23 tháng 10 2021

\(3,1+5^2+5^4+...+5^{26}\)

\(=\left(1+5^2\right)+\left(5^4+5^6\right)+...+\left(5^{24}+5^{26}\right)\)

\(=\left(1+5^2\right)+5^4\left(1+5^2\right)+...+5^{24}\left(1+5^2\right)\)

\(=26+5^4.26+...+5^{24}.26\)

\(=26\left(5^4+...+5^{24}\right)\)

Vì  \(26⋮26\)

\(\Rightarrow26\left(5^4+...+5^{24}\right)⋮26\)

\(\Rightarrow1+5^2+5^4+...+5^{26}⋮26\)

23 tháng 10 2021

\(4,1+2^2+2^4+...+2^{100}\)

\(=\left(1+2^2+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=\left(1+2^2+2^4\right)+....+2^{98}\left(1+2^2+2^4\right)\)

\(=21+2^6.21...+2^{98}.21\)

\(=21\left(2^6+...+2^{98}\right)\)

Có : \(21\left(2^6+...+2^{98}\right)⋮21\)

\(\Rightarrow1+2^2+2^4+...+2^{100}⋮21\)

11 tháng 10 2021

*sửa lại đề 1 xíu!

3+32+33+34+...+3119=(3+32)+(33+34)+.....+(3118+3119)=3(1+3)+33(1+3)+....+3118(1+3)=3.4+33+4+....+3118.4=4.(3+33+....+3118)

chia hết cho 4 (đpcm)