Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Đặt \(A=a^2+b^2+c^2\)
Do tích a.b chẵn nên ta xét các trường hợp :
TH1 : Trong a và b có 1 số chẵn và 1 số lẻ
Giả sử a là số chẵn, còn b là số lẻ 2
=> a2 chia hết cho 4; b2 chia 4 dư 1 => a2 + b2 chia 4 dư 1
=> a2 + b2 = 4m + 1 (m thuộc N)
Chon c = 2m => a2 + b2 + c2 = 4m2 + 4m + 1 = (2m + 1)2 (thỏa mãn) (1)
TH2 : Cả a,b cùng chẵn
=> a2 + b2 chia hết cho 4 => a2 + b2 = 4n (n thuộc N)
Chọn c = n - 1 => a2 + b2 + c2 = n2 + 2n + 1 = (n + 1)2 (thỏa mãn) (2)
Từ (1) và (2) => Luôn tìm được số nguyên c thỏa mãn đề bài
Do a, b là số chẵn nên ta xét 2 trường hợp:
TH1: a chẵn, b lẻ => a2 + b2 = 4m + 1, khi đó chọn c có dạng 2m ta luôn có a2 + b2 + c2 = 4m2 + 4m + 1 = (2m + 1)2 (ĐPCM)
TH2 : a, b chẵn => a2 + b2 = 4n, khi đó chọn c có dạng n-1 ta luôn có a2 + b2 + c2 = n2 + 2n + 1 = (n+1)2 (ĐPCM)
Mẹo: Làm xuất hiện (xy-1)/xy
\(x^2+y^2=2x^2y^2\Leftrightarrow x^2+y^2-2xy=2xy\left(xy-1\right)\)
\(\Leftrightarrow\frac{xy-1}{xy}=\frac{x^2+y^2-2xy}{2x^2y^2}=\frac{1}{2}\left(\frac{1}{y^2}+\frac{1}{x^2}-\frac{2}{xy}\right)=\frac{1}{2}\left(\frac{1}{x}-\frac{1}{y}\right)^2\)
hm Đề sai ah
Mọi người giúp em với, em cần gấp lắm ạ. Em cảm ơn mọi người nhiều ạ
y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1
=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2
=> 2y^2 + 1 chia 4 dư 4
mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương
Ta có công thức:
\(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
Áp dụng vào bài toán:
\(1^2+2^2+...+100^2=\frac{100.101.201}{6}=338350\)không là số chính phương