Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
* Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
Với k = 0 ta có dãy 1, 2, 3,…,10 chứa 4 số nguyên tố 2, 3, 5, 7
Với k = 1 ta có dãy 2, 3, 4,…, 11 chứa 5 số nguyên tố là 2, 3, 5, 7, 11
Với k = 2 ta có dãy 3, 4, 5,…, 12 chứa 4 số nguyên tố là 3, 5, 7, 11
Với k ≥ 3 dãy k + 1, k + 2,…,k + 10 chứa 5 số lẽ liờn tiếp, dãy số này đều lớn hơn 3 nên có một số chia hết cho 3, trong dãy có 5 số chẵn hiễn nhiên không phải là số nguyên tố nếu k ≥ 3
Vậy k = 1 thì dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất.
Bài 119
\(\overline{1a}\) là số nguyên tố nên a = 1; 3; 7; 9 vậy \(\overline{1a}\) = 11; 13; 17; 19
\(\overline{3a}\) là số nguyên tố nên a = 1; 7 vậy \(\overline{3a}\) = 31; 37
Bài 120
\(\overline{5a}\) là số nguyên tố nên a = 3; 9 Vậy \(\overline{5a}\) = 53; 59
\(\overline{9a}\) là số nguyên tố nên a = 7 vậy \(\overline{9a}\) = 57
Xét K=0=>3k=0(loại)
Xét K=1=>3k(thỏa mãn)
Xét k>1=>3k có nhiều hơn 2 ước (loại)
=> k=1
Tương tự với câu 7k
xét k=0=>3k=0(loại)
xét k=1=>3k=3(thỏa mãn)
xét k>1=>.3k có nhiều hơn 2 ước(loại)
=>k=1
tương tự với câu 7k
a) Nếu k > 1 thì 3k có ít nhất ba ước là 1, 3, k; nghĩa là nếu k > 1 thì 3k là một hợp số. Do đó để 3k là một số nguyên tố thì k = 1.
b) ĐS: k = 1
a) \(k=1\) vì nếu \(k>1\) thì \(3k⋮3\) \(\rightarrow\)không phải là số nguyên tố
b) \(k=1\) vì nếu \(k>1\) thì \(7k⋮7\) \(\rightarrow\) không phải là số nguyên tố
KIÚ TUI :((((
-Xét k=0 thì sẽ có tất cả 6 số nguyên tố bao gồm:3,5,7,11,13,17
-Xét k=1 thì sẽ có tất cả 0 số nguyên tố
-Xét k=2 thì sẽ có tất cả 7 số nguyên tố bao gồm:3,5,7,11,13,17,19
-Xét k=3 thì sẽ có tất cả 1 số nguyên tố là 7
-Xét k>3 thì có 2 trường hợp:
+Trường hợp 1:k=3n+1 thì sẽ có tất cả 7 số nguyến tố bao gồm:3n+2,3n+4,3n+4,3n+8,3n+10,3n+14,3n+16,3n+20
+Trường hợp 2:k=3n+2 thì sẽ có tất cả 6 số nguyên tố bao gồm:3n+5,3n+7,3n+11,3n+13,3n+17,3n+19
⇒k ϵ {2;3n+1}
Vậy:...