loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2024

Câu 13: 

 Ta có công thức lãi kép: \(C=A\left(1+r\right)^N\) với C là số tiền thu được (cả vốn lẫn lãi); A là số tiền gửi; r là lãi suất mỗi kì, N là số kì.

 a) Sau 2 năm số tiền cả vốn lẫn lãi ở quyển 1 là \(100\left(1+6,8\%\right)^2=114,0624\approx114\) (triệu đồng)

 \(\Rightarrow\) Khẳng định đúng

 b) Sau 2 năm số tiền cả vốn lẫn lãi ở quyển 2 là \(100\left(1+6\%\right)^2=112,36\) (tr đồng)

 Suy ra số tiền ở cả 2 quyển là \(114,0624+112,36=226,4224\) (tr đồng)

 \(\Rightarrow\) Khẳng định đúng. 

 c) Số tiền gửi sau \(N\) năm (kì) là:

 \(C=100\left(1+6,8\%\right)^N+100\left(1+6\%\right)^N\)

 Thế \(N\ge8\), ta có      \(C\ge100\left[\left(1+6.8\%\right)^8+\left(1+6\%\right)^8\right]\approx328,65>300\)

 \(\Rightarrow\) Khẳng định đúng.

 d) Ta nhắc lại rằng nếu theo ban đầu, sau 2 năm thì số tiền thu được sẽ là \(226,4224\) tr đồng.

 Theo tình huống mới, số tiền sau năm đầu ở quyển 1, 2 lần lượt là \(114,0624\) tr đồng và \(112,36\) tr đồng. Sau khi lấy 1 nửa số tiền từ đây chuyển sang quyển 2 thì lúc này quyển 1 còn \(57,0312\) tr đồng và quyển 2 có \(169,3912\) tr đồng. Sau năm thứ 2, quyển 1 có \(57,0312\left(1+6,8\%\right)=60,9093216\) (tr đồng), quyển 2 có \(169,3912\left(1+6\%\right)=179,554672\) (tr đồng). Do vậy cả 2 quyển có \(179,554672+60,9093216=240,4639936\) (tr đồng)

 \(\Rightarrow\)  Khẳng định đúng.

1 tháng 3 2024

Câu 14:

a) \(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{2-\sqrt{2-x}}{x+2}=\dfrac{2-\sqrt{2-1}}{1+2}=f\left(1\right)\) => Khẳng định đúng.

b) \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(x^2+ax+2\right)=+\infty\) => Khẳng định sai.

c) \(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=\lim\limits_{x\rightarrow-2^+}\dfrac{2-\sqrt{2-x}}{x+2}\) \(=\lim\limits_{x\rightarrow-2^+}\dfrac{4-\left(2-x\right)}{\left(x+2\right)\left(2+\sqrt{2-x}\right)}\)

\(=\lim\limits_{x\rightarrow-2^+}\dfrac{1}{2+\sqrt{2-x}}\) \(=\dfrac{1}{2+\sqrt{2-\left(-2\right)}}=\dfrac{1}{4}\)

=> Khẳng định đúng.

d) Ta có \(\lim\limits_{x\rightarrow-2^+}f\left(x\right)=\dfrac{1}{4}\) và \(\lim\limits_{x\rightarrow-2^-}f\left(x\right)=\lim\limits_{x\rightarrow-2^-}\left(x^2+ax+2\right)=4-2a+2\)

 Để tồn tại \(\lim\limits_{x\rightarrow-2}f\left(x\right)\) thì \(4-2a+2=\dfrac{1}{4}\) \(\Leftrightarrow a=\dfrac{23}{8}\)

 Có \(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{2-\sqrt{2-x}}{x+2}=\dfrac{1}{2}\)

 \(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\left(x+a-b\right)=2+a-b\)

 Để tồn tại \(\lim\limits_{x\rightarrow2}f\left(x\right)\) thì \(2+a-b=\dfrac{1}{2}\) \(\Leftrightarrow b=a+\dfrac{3}{2}=\dfrac{35}{8}\)

 Khi đó \(4\left(a+b\right)=4\left(\dfrac{23}{8}+\dfrac{35}{8}\right)=29\)

=> Khẳng định đúng

Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

NV
19 tháng 4 2022

Gọi H là trung điểm AB, có lẽ từ 2 câu trên ta đã phải chứng minh được \(SH\perp\left(ABCD\right)\)

Do \(\left\{{}\begin{matrix}DM\cap\left(SAC\right)=S\\MS=\dfrac{1}{2}DS\end{matrix}\right.\) \(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)\)

Gọi E là giao điểm AC và DH

Talet: \(\dfrac{HE}{DE}=\dfrac{AH}{DC}=\dfrac{1}{2}\Rightarrow HE=\dfrac{1}{2}DE\)

\(\left\{{}\begin{matrix}DH\cap\left(SAC\right)=E\\HE=\dfrac{1}{2}DE\end{matrix}\right.\) \(\Rightarrow D\left(H;\left(SAC\right)\right)=\dfrac{1}{2}d\left(D;\left(SAC\right)\right)=d\left(M;\left(SAC\right)\right)\)

Từ H kẻ HF vuông góc AC (F thuộc AC), từ H kẻ \(HK\perp SF\)

\(\Rightarrow HK\perp\left(SAC\right)\Rightarrow HK=d\left(H;\left(SAC\right)\right)\)

ABCD là hình vuông \(\Rightarrow\widehat{HAF}=45^0\Rightarrow HF=AH.sin45^0=\dfrac{a\sqrt{2}}{4}\)

\(SH=\dfrac{a\sqrt{3}}{2}\), hệ thức lượng:

\(HK=\dfrac{SH.HF}{\sqrt{SH^2+HF^2}}=\dfrac{a\sqrt{21}}{14}\)

\(\Rightarrow d\left(M;\left(SAC\right)\right)=\dfrac{a\sqrt{21}}{14}\)

NV
19 tháng 4 2022

undefined

31 tháng 10 2016

giúp mình với !!!!

 

NV
19 tháng 4 2022

Tức là câu 2, 3 của bài hình không gian đúng không em?

19 tháng 4 2022

Đúng rồi ạ , Thầy giúp em với ạ !

NM
2 tháng 9 2021

ta có chu kỳ của hàm số bằng \(\frac{\pi}{3}\)

mà ta có :\(tan3x\text{ có chu kỳ là }\frac{2\pi}{3}\)\(cotmx\text{ có chu kỳ là }\frac{2\pi}{m}\)

vậy \(\frac{\pi}{3}\text{ là UCLN của }\left(\frac{2\pi}{3},\frac{2\pi}{m}\right)\Rightarrow m=6\)

thay lại thấy thỏa mãn, vậy m=6

2 tháng 9 2021

@Nguyễn Minh Quang Cảm ơn b đã trả lời, nhưng hình như chu kỳ của tan3x là pi/3 đúng không ạ?