Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 1 tam giác, 3 đường phân giác cắt nhau tại 1 điểm và điểm đó cách đều 3 cạnh của tam giác (điểm này gọi là tâm đường tròn nộ tiếp). Nối E -> F; E -> D ; D -> F. Ta sẽ chứng minh H là giao điểm 3 đường phân giác.
Ta chứng minh được ∆AFC ~ ∆AEB(g.g) => AF/AE = AC/AB => AF/AC = AE/AB. => ta chứng minh được ∆AEF ~ ∆ABC(c.g.c) => góc AEF = góc ABC, chứng minh tương tư ta được ∆CED ~ ∆CBA => góc CED = góc ABC => góc AEF = góc CED ( = góc ABC), ta có: góc FEB = 90º - góc AEF và góc BED = 90º - góc CED, mà góc AEF = góc CED => góc FEB = góc BED => BE là phân giác góc FED => EH là phân giác góc FED, chứng minh tương tự ta được DH là phân giác góc EDF và FH là phân giác góc EFD
=> đpcm
bạn chứng minh rõ DH là tia phân giác cho mình đc k, k rõ cho lắm
-Xét △BCF và △BAD có:
\(\widehat{ABC}\) là góc chung
\(\widehat{BFC}=\widehat{BDA}=90^0\)
\(\Rightarrow\)△BCF∼△BAD (g-g).
\(\Rightarrow\dfrac{BC}{BA}=\dfrac{BF}{BD}\) (tỉ số đồng dạng)
\(\Rightarrow BF.BA=BC.BD\left(1\right)\)
-Xét △ACD và △BCE có:
\(\widehat{ACB}\) là góc chung
\(\widehat{ADC}=\widehat{BEC}=90^0\)
\(\Rightarrow\)△ACD∼△BCE (g-g)
\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CD}{CE}\) (tỉ số đồng dạng)
\(\Rightarrow CE.CA=CD.BC\left(2\right)\)
-Từ (1) và (2) suy ra:
\(BF.BA+CE.CA=BD.BC+CD.BC=BC\left(BD+CD\right)=BC.BC=BC^2\)
S B H C = 1 2 H D . B C ; S A B C = 1 2 A D . B C ⇒ S B H C S A B C = H D A D ( 1 )
Chứng minh tương tự, ta có:
S A H C S A B C = H E B E ; S A H B S A B C = H F C F (2)
Từ (1) và (2), suy ra được H D A D + H E B E + H F C F = 1 (ĐPCM)
1: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF và AE/AB=AF/AC
2: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng vơi ΔABC
3: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
=>HF/HE=HB/HC
=>HF/HB=HE/HC
Xét ΔHFE và ΔHBC có
HF/HB=HE/HC
góc FHE=góc BHC
=>ΔFHE đồng dạng với ΔBHC
a) Xét ΔABE vuông tại E và ΔACF vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔABE∼ΔACF(g-g)
b) Ta có: ΔBEC vuông tại E(gt)
nên \(\widehat{EBC}+\widehat{ECB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DBH}+\widehat{ACB}=90^0\)(1)
Ta có: ΔDAC vuông tại D(gt)
nên \(\widehat{DAC}+\widehat{DCA}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{DAC}+\widehat{ACB}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{DBH}=\widehat{DAC}\)
Xét ΔDBH vuông tại D và ΔDAC vuông tại D có
\(\widehat{DBH}=\widehat{DAC}\)(cmt)
nên ΔDBH\(\sim\)ΔDAC(g-g)
Suy ra: \(\dfrac{DB}{DA}=\dfrac{DH}{DC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(DB\cdot DC=DH\cdot DA\)(đpcm)
\(BE||DM\) (cùng vuông góc AC)
Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)
\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)
Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)
Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)
\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)
Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)
\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)
(1); (2) suy ra đpcm
1: Xét ΔAEB vuông tại Evà ΔAFC vuông tại F có
góc EAB chung
=>ΔAEB đồg dạng vớiΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF; AE/Ab=AF/AC
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC