K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2024

Xét △ABC và △HBA có:
BAC=BHA(=90 độ)

ABC chung

=>ΔABC \(\sim\)ΔHBA

=>AB/HB=BC/BA

=>AB^2=HB.BC

Xét ΔHBA và ΔHAC có

AHB=AHC(=90 độ)

ABH=CAH(phụ BAH)

=>ΔHBA\(\sim\)ΔHAC

=>AH/CH=BH/AH

=>AH^2=BH.CH

c. Ta có: BM/MA=EB/EA

              AE/EC=BA/BC

             CN/BN=EC/BE

BM/MA.AE/EC.CN/BN=EB/EA.BA/BC.EC/BE

=>Để BM/MA.AE/EC.CN/BN=1 thì <=> EB/EA.BA/BC.EC/BE=1
(EB.BA.EC)/(EA.BC.BE)=1

<=>(BA.EC)/(EA.BC)=1

<=>BA.EC=EA.BC

<=>BA/BC=AE/EC
mà BA/BC=AE/EC(t/c đg phân giác)

=>BM/MA.AE/EC.CN/BN=1

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔBAC có BF là phân giác

nên AF/AB=CF/CB

=>AF*CB=AB*CF

11 tháng 4 2022

a.Xét tam giác ABC và tam giác HBA, có:

^A=^H = 90 độ

^B: chung

Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BC.HB\)

b.Áp dụng định lý pitago vào tam giác vuông ABC, có:

\(BC=\sqrt{15^2+20^2}=25cm\)

Ta có:\(AB^2=BC.HB\)

\(\Leftrightarrow15^2=25HB\)

\(\Leftrightarrow HB=9cm\)

\(\Rightarrow HC=25-9=16cm\)

c. Áp dụng t/c đường phân giác góc A, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)

\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)

 

22 tháng 4 2018

A B C H 12cm 16cm I D

a)Tính BC:

\(\Delta ABC\)vuông tại A nên:

BC2=AB2+AC2

BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)

b) Xét \(\Delta vuôngABC\)\(\Delta VuôngHBA\)có:

\(\widehat{B}\):chung 

Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)

Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)

=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH       =>AB = BC.BH

c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:

\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)

Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:

\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác)   (2)

Vì BI là đường phân giác của \(\Delta HBA\) nên:

\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác)   (3)

Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: Xét ΔAEB và ΔIEC có

góc BAE=góc EIC

góc AEB=góc IEC

=>góc ABE=góc ICE=góc IBC

=>ΔIEC đồng dạng với ΔICB

=>IE/IC=IC/IB

=>IC^2=IE*IB

c: Xét ΔBNC có 

BI vừa là phân giác, vừa là đường cao

=>ΔBNC cân tại B

=>I là trung điểm của NC

ΔNAC vuông tại A

mà I là trung điểm của NC

nên IA=IN=IC

=>IN^2=IE*IB

và IA=IM

nên IM^2=IE*IB

=>IM/IE=IB/IM

=>ΔIMB đồng dạng với ΔIEM

=>góc IMB=90 độ

=>ĐPCM

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔCHA\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)

Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)

c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)

nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)

Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)

hay KI//AC(Định lí Ta lét đảo)

25 tháng 2 2020

a) Xét tam giác ABC và tan giác HBA, ta có: 

\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)

\(\widehat{B}\)là góc chung

   => Tam giác ABC ~ tam giác HBA (g-g)

   =>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)

Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)

   <=> AB . AB = BC . BH

   <=> \(AB^2\)= BC . BH

b) Xét tam giác ABC và tam giác HAC, ta có:

\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)

\(\widehat{C}\)là góc chung

   => Tam giác ABC ~ tam giác HAC (g-g)

Mà tam giác ABC ~ tam giác HBA (cmt)

   => Tam giác HBA ~ tam giác HAC (tính chất)

  => \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)

Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)

   <=> AH . AH = HB . HC

   <=> \(AH^2\)= HB . HC

c) Tam giac ABC vuong tai A co:

\(BC^2\)\(AB^2\)+\(AC^2\)(Pytago)

\(BC^2\)\(6^2\)+\(8^2\)

\(BC^2\)= 100

   <=> BC =\(\sqrt{100}\)(BC > 0)

   <=> BC = 10 (cm)

Mat khac: BC = HB + HC

    Tam giac HAC vuong tai H co:

\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)

\(8^2\)= HB . HC + \(HC^2\)

64 = HC (HB + HC)

64 = HC . BC

64 = HC . 10

   => HC = 6,4 (cm)

Ma BC = HB + HC

   => 10 = HB + 6,4

   <=> HB = 3,6 (cm)

   Ta co:

\(AH^2\)= HB . HC (cmt)

   =>\(AH^2\)= 3,6 . 6,4

   <=> \(AH^2\)= 23,04

   <=> AH = \(\sqrt{23,04}\)(AH > 0)

   <=> AH = 4,8 (cm)