Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABC và tam giác HBA có
góc BAC=góc AHB=90 độ
góc B chung
suy ra tam giác ABC đồng dạng với tam giác HBA
suy ra AB phần HB = BC phần AB
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔBAC có BF là phân giác
nên AF/AB=CF/CB
=>AF*CB=AB*CF
a.Xét tam giác ABC và tam giác HBA, có:
^A=^H = 90 độ
^B: chung
Vậy tam giác ABC đồng dạng tam giác HBA ( g.g )
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BC.HB\)
b.Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC=\sqrt{15^2+20^2}=25cm\)
Ta có:\(AB^2=BC.HB\)
\(\Leftrightarrow15^2=25HB\)
\(\Leftrightarrow HB=9cm\)
\(\Rightarrow HC=25-9=16cm\)
c. Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{DC}{AC}=\dfrac{DB}{AB}=\dfrac{DC+DB}{AC+AB}=\dfrac{25}{35}=\dfrac{5}{7}\)
\(\Rightarrow DB=\dfrac{5}{7}.15=\dfrac{75}{7}cm\)
A B C H 12cm 16cm I D
a)Tính BC:
\(\Delta ABC\)vuông tại A nên:
BC2=AB2+AC2
BC=\(\sqrt{AB^2+AC^2}\)=\(\sqrt[]{12^2+16^2}\)=20 (cm)
b) Xét \(\Delta vuôngABC\)và\(\Delta VuôngHBA\)có:
\(\widehat{B}\):chung
Do đó \(\Delta ABC\)đồng dạng \(\Delta HBA\)(góc nhọn)
Vì \(\Delta ABC\)đồng dạng \(\Delta HBA\)
=>\(\frac{AB}{BH}=\frac{BC}{AB}\)=> AB.AB = BC.BH =>AB2 = BC.BH
c) Vì \(\Delta ABC\) đồng dạng \(\Delta HBA\) nên:
\(\frac{BA}{BC}=\frac{BH}{BA}\) (1)
Mặt khác: Do BD là đường phân giác của \(\Delta ABC\)nên:
\(\frac{AD}{DC}=\frac{BA}{BC}\)( T/c đường phân giác trong tam giác) (2)
Vì BI là đường phân giác của \(\Delta HBA\) nên:
\(\frac{IH}{AI}=\frac{BH}{BA}\)( T/c đường phân giác trong tam giác) (3)
Từ (1), (2), (3) Suy ra \(\frac{IH}{AI}=\frac{AD}{DC}\) (T/c bắc cầu)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a: Xet ΔABC vuông tại A và ΔHBA vuôngtại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
b: Xét ΔAEB và ΔIEC có
góc BAE=góc EIC
góc AEB=góc IEC
=>góc ABE=góc ICE=góc IBC
=>ΔIEC đồng dạng với ΔICB
=>IE/IC=IC/IB
=>IC^2=IE*IB
c: Xét ΔBNC có
BI vừa là phân giác, vừa là đường cao
=>ΔBNC cân tại B
=>I là trung điểm của NC
ΔNAC vuông tại A
mà I là trung điểm của NC
nên IA=IN=IC
=>IN^2=IE*IB
và IA=IM
nên IM^2=IE*IB
=>IM/IE=IB/IM
=>ΔIMB đồng dạng với ΔIEM
=>góc IMB=90 độ
=>ĐPCM
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔCHA\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)
Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)
c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)
nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)
Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)
hay KI//AC(Định lí Ta lét đảo)
a) Xét tam giác ABC và tan giác HBA, ta có:
\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
=> Tam giác ABC ~ tam giác HBA (g-g)
=>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)
Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)
<=> AB . AB = BC . BH
<=> \(AB^2\)= BC . BH
b) Xét tam giác ABC và tam giác HAC, ta có:
\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)
\(\widehat{C}\)là góc chung
=> Tam giác ABC ~ tam giác HAC (g-g)
Mà tam giác ABC ~ tam giác HBA (cmt)
=> Tam giác HBA ~ tam giác HAC (tính chất)
=> \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)
Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)
<=> AH . AH = HB . HC
<=> \(AH^2\)= HB . HC
c) Tam giac ABC vuong tai A co:
\(BC^2\)= \(AB^2\)+\(AC^2\)(Pytago)
\(BC^2\)= \(6^2\)+\(8^2\)
\(BC^2\)= 100
<=> BC =\(\sqrt{100}\)(BC > 0)
<=> BC = 10 (cm)
Mat khac: BC = HB + HC
Tam giac HAC vuong tai H co:
\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)
\(8^2\)= HB . HC + \(HC^2\)
64 = HC (HB + HC)
64 = HC . BC
64 = HC . 10
=> HC = 6,4 (cm)
Ma BC = HB + HC
=> 10 = HB + 6,4
<=> HB = 3,6 (cm)
Ta co:
\(AH^2\)= HB . HC (cmt)
=>\(AH^2\)= 3,6 . 6,4
<=> \(AH^2\)= 23,04
<=> AH = \(\sqrt{23,04}\)(AH > 0)
<=> AH = 4,8 (cm)
Xét △ABC và △HBA có:
BAC=BHA(=90 độ)
ABC chung
=>ΔABC \(\sim\)ΔHBA
=>AB/HB=BC/BA
=>AB^2=HB.BC
Xét ΔHBA và ΔHAC có
AHB=AHC(=90 độ)
ABH=CAH(phụ BAH)
=>ΔHBA\(\sim\)ΔHAC
=>AH/CH=BH/AH
=>AH^2=BH.CH
c. Ta có: BM/MA=EB/EA
AE/EC=BA/BC
CN/BN=EC/BE
BM/MA.AE/EC.CN/BN=EB/EA.BA/BC.EC/BE
=>Để BM/MA.AE/EC.CN/BN=1 thì <=> EB/EA.BA/BC.EC/BE=1
(EB.BA.EC)/(EA.BC.BE)=1
<=>(BA.EC)/(EA.BC)=1
<=>BA.EC=EA.BC
<=>BA/BC=AE/EC
mà BA/BC=AE/EC(t/c đg phân giác)
=>BM/MA.AE/EC.CN/BN=1