Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BIM=góc BHM=90 độ
=>BMHI nội tiếp
b: góc CBM=góc MAC=góc MAK
=>góc MAK=góc MIK
a, HS tự chứng minh
b, HS tự chứng minh
c, HS tự chứng minh
d, ∆MIH:∆MAB
=> M H M B = I H A B = 2 E H 2 F B = E H F B
=> ∆MHE:∆MBF
=> M F A ^ = M E K ^ (cùng bù với hai góc bằng nhau)
=> KMEF nội tiếp => M E F ^ = 90 0
<=> 1/3 + 1/6 + 1/10 +...+ 1/x(x+1):2 = 1/1991/1993 - 1 = 1991/1993
<=> 1/2(2+1):2 + 1/3(3+1):2 + ...+ 1/x(x+1):2 = 1991/1993
<=> 1/2.3:2 + 1/3.4:2 +...+ 1/x(x+1):2 = 1991/1993
<=>(1/2 - 1/3):1/2 + (1/3 - 1/4 ):1/2+...+(1/x-1/x+1):1/2=1991/1993
<=>(1/2-1/3).2 + (1/3-1/4).2+...+(1/x-1/x+1).2 = 1991/1993
<=>2.(1/2-1/3+1/3-1/4+1/4-1/5+....+1/x-1/x+1)=1991/1993
<=>2.(1/2-1/x+1)=1991/1993
<=>1/2-1/x+1=1991/1993:2=1991/3986
<=> 1/x+1=1/2-1991/3986=2/3986=1/1993
=>x=1993-1=1992
1/Xét tứ giác MIHC có:
góc MIC=90 độ (MI vuông góc với AC tại I)(1)
góc MHC=90 độ (MH vuông góc với BC tại H)(2)
Từ (1) và (2)=> tứ giác MIHC nội tiếp
(tứ giác có 2 đỉnh kề nhau cùng nhìn cạnh chứa 2 đỉnh còn lại dưới một góc 90 độ)
=> góc IHM=góc ICM (cùng chắn cung IM)(đpcm)
2/Tứ giác ABCM nội tiếp (O)
=> góc MCB= góc MAK (3)
Tứ giác MIHC nội tiếp (c/m trên)
=>góc MCB= góc MIK (4)
Từ (3) và (4)=> góc MAK= góc MIK
=> Tứ giác AIMK nội tiếp
(tứ giác có 2 đỉnh kề nhau cùng nhìn cạnh chứa 2 đỉnh còn lại dưới 1 góc an-pha)
=>góc AKM+góc AIM=180 độ
=>góc AKM=90 độ (vì góc AIM= 90 độ)
=>MK vuông góc với BK tại K( đpcm)
Còn câu 3 và 4 đề ko có D và F nên mk ko c/m dc
chị ơi! cái này em chưa học nên chưa biết trả lời lời làm sao mong chị thông cảm
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
Điểm I ở câu 2 là điểm nào em?
1, Ta có \(\widehat{MHB}=\widehat{MKB}=90^o\) nên tứ giác BHMK nội tiếp đường tròn (BM) nên \(\widehat{MHK}=\widehat{MBK}\)
Lại có tứ giác ABCM nội tiếp nên \(\widehat{MBK}=\widehat{ACM}\) (góc ngoài bằng góc trong đối)
\(\Rightarrow\widehat{MHK}=\widehat{MBK}=\widehat{ACM}\)
2, Ta có \(\widehat{MHC}=\widehat{MIC}=90^o\) nên tứ giác MHIC nội tiếp đường tròn (MC).
\(\Rightarrow\widehat{MHI}+\widehat{MCA}=180^o\)
Lại có \(\widehat{MCA}=\widehat{MHK}\left(cmt\right)\Rightarrow\) \(\widehat{MHI}+\widehat{MHK}=180^o\) \(\Rightarrow\) H, K, I thẳng hàng.
Thêm: Đường thẳng qua 3 điểm H, I, K gọi là đường thẳng Simson trong tam giác. Bạn có thể lên mạng tham khảo thêm.