Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=1+3+3^2+..........+3^{55}\)
\(\Leftrightarrow3A=3+3^2+...........+3^{55}+3^{56}\)
\(\Leftrightarrow3A-A=\left(3+3^2+........+3^{56}\right)-\left(1+3+....+3^{55}\right)\)
\(\Leftrightarrow2A=3^{56}-1\)
\(\Leftrightarrow A=\frac{3^{56}-1}{2}\)
Ta có: C=22+42+62+...+502
- C=(1.2)2+(2.2)2+(2.3)2+...+(2.25)2
- C=12.22+22.22+22.32+...+22.252
- C=22.(12+22+32+42+...+252)
- C=4. 5525
- C= 22100
- Vậy C=22100
- tick nhé
Ta có: C=22+42+62+...+502
C=(1.2)2+(2.2)2+(2.3)2+...+(2.25)2
C=12.22+22.22+22.32+...+22.252
C=22.(12+22+32+42+...+252)
C=4. 5525
C= 22100
Vậy C=22100
\(S=4+4^1+4^2+...+4^{30}\)
\(4S=4^2+4^2+4^3+...+4^{31}\)
\(4S-S=\left(4^2+4^2+4^3+...+4^{31}\right)-\left(4+4+4^2+...+4^{30}\right)\)
\(3S=4^2+4^{31}-4-4\)
\(3S=4^{31}+8\)
\(S=\frac{4^{31}+8}{3}\)
S=4+42+43+......+430
4S=4(4+42+43+.....+430)
4S=42+43+.....+430+431
Lấy 4s -s ,ta có:
: 4S=42+43+....+431
----
S=4+42+...+430
__________________________________________
3S=431-4
Suy ra S=(431-4):3
Vậy S= (431-4) : 3
Thi tốt nhé
\(S=4+4^1+4^2+4^3+.........+4^{29}+4^{30}\)
\(\Rightarrow4S=4^2+4^2+4^3+4^4+........+4^{31}\)
\(\Rightarrow4S-S=3S=4^{31}+4.2\)
đặt biểu thức ban đầu là A, 42020+42019+...+4+1=B
4B=42021 +42020 +42019+...+42+4
3B=4B-B=42021-1 => B= (42021-1)/3
A=75B+25=75(42021-1)/3 + 25= 25(42021-1)+25=25(42021-1+1)=25.42021=100.42020
=> A chia hết cho cả 100 và 42021
mặt khác A=25.42021=42021.(24+1)=24.42021+42021=6.42022+42021
vì 42021<42022 nên A chia 42022 dư 42021
tick cho mk nha!!!!!!!!
S = \(\dfrac{1+4+4^2+4^3+4^4+...+4^{2021}}{1-4^{2022}}\)
Đặt tử số là A thì S = \(\dfrac{A}{1-4^{2022}}\)
A = 1 + 4 + 42 + 43 + 44 + ... + 42021
4A= 4 + 42 + 43 + 44 + 45 + ....+ 42022
4A - A = 4 + 42+43+44+45+...+42022- (1+4+42+43+44+...+42021)
4A = 4 + 42 + 43 + 44+45+42022 - 1 - 4 - 42 - 43 - 44 - ... - 42021
3A = (4 - 4) +(42 - 42) + (43-43) + (44 -44) +...+(42021- 42021)+42022- 1
3A = 42022 - 1
A = \(\dfrac{4^{2022}-1}{3}\)
S = \(\dfrac{4^{2022}-1}{3}\). \(\dfrac{1}{1-4^{2022}}\)
S = - \(\dfrac{1}{3}\)
Ta đặt: \(A=1+4+4^2+...+4^{2021}\)
\(4A=4+4^2+4^3+...+4^{2022}\)
\(4A-A=4+4^2+4^3+...+4^{2022}-1-4-4^2-...-4^{2021}\)
\(3A=4^{2022}-1\)
\(A=\dfrac{4^{2022}-1}{3}\)
\(\Rightarrow S=\dfrac{1+4+4^2+...+4^{2021}}{1-4^{2022}}\)
\(=\dfrac{\left(4^{2022}-1\right):3}{1-4^{2022}}\)
\(=\dfrac{\left(4^{2022}-1\right)\cdot\dfrac{1}{3}}{-\left(4^{2022}-1\right)}\)
\(=-\dfrac{1}{3}\)