Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ra, ta có :
`A=1+32+34+36+....+32008`
\(\Rightarrow\) `9A = 3^2 + 3^4 + 3^6 + 3^8 + ... + 3^2010`
`9A - A=(32+34+36+38+....+ 32010)-(1+32+34+36+....+ 32008)`
\(\Rightarrow\) `8A=(-1)+32010`
\(\Rightarrow\) `8A-32010=(-1)`
@Nae
B = 1 + 32 + 34 + … + 32018
32.B = 32.( 1 + 32 + 34 + … + 32018)
9B = 32 + 34 + 36 + … + 32020
9B – B = (32 + 34 + 36 + … + 32020) – (1 + 32 + 34 + … + 32018)
8B = 32020 – 1
B = (32020 – 1) : 8.
Vậy B = (32020 – 1) : 8.
Bài 1:
a. $2^{29}< 5^{29}< 5^{39}$
$\Rightarrow A< B$
b.
$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$
$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$
$=(1+3)(3+3^3+3^5+...+3^{2009})$
$=4(3+3^3+3^5+...+3^{2009})\vdots 4$
Mặt khác:
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$
$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$
Bài 1:
c.
$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$
$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$
$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$
$\Rightarrow A=\frac{3^{101}+1}{4}$
a, 5 3 + 3 4 + 4 . 2 + 27 - 3 : 4
= 125+170+6
= 301
b, 124 : 3 2 . 7 - 1 10 + 24 : 5 2
= 124:[9.7–(1+24):25]
= 124 : [63–25:25]
= 124:62
= 2
c, 245 - 4 16 : 8 + 2 4 . 3 2 - 9
= 245–4[2+2.27]
= 245–4.45
= 29
d, 375 : 5 3 - 3 8 : 3 6 - 2 . 2 3
= 375 : 125 – (9–16)
= 3–9+16
= 10
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
\(A=3^2+3^4+3^6+...+3^{20}-200n\)
\(=3^2\left(1+3^2\right)+3^6\left(1+3^2\right)+...+3^{18}\left(1+3^2\right)-200n\)
\(=10\left(3^2+3^6+...+3^{18}-20n\right)⋮10\)
\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)
\(=4.\left(3+3^3+...+3^{2009}\right)\)
⇒ \(B\) ⋮ 4
b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)
SSH: (100 - 0): 2 + 1 = 51 (số)
Ta có: A = 1 + 32 + 34+....+3100
= 30 + 32 + 34+....+3100
32A = 32 + 34+....+3100 + 3102
9A - A = (32 + 34+....+3100 + 3102)-(30 + 32 + 34+....+3100)
8A = 3102 - 1
A = 3102 - 1/8
=> B = 8*3102 - 1/8 - 32010
B = 3102 - 1 - 32010