K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2024

P={(a-3)-[a+3+a+2]}

P={a-3-2a-5}

P=-a-8

Q=[2a+3]-4

Q=2a-1

=>2a-1>-a-8

Hơi tắt nha bn

16 tháng 4 2017

Vì bạn bảo gợi ý nên gợi ý thui không giải:
1) Bạn thấy con A có tử 6- 840 là âm mà 520+1 là dương =>tử âm,mẫu dương=> p/s đó là âm
Còn phần B thì trên tử 3-540 và 2-720 là 2 số âm,mà tử âm,mẫu âm thì phân số đó dương
Số dương như thế nào với số âm thì tự làm...(gợi ý mà)
2) Phần b giống phần a nhé!
 

16 tháng 4 2017

Cảm ơn bạn Phùng Quang Thịnh :D
Còn bài 3 mình đã thử giải nhưng chưa ra , vì mẫu số là các số tự nhiên không liền kề nhau nên không rút gọn được .

23 tháng 3 2019

Ta có công thức: \(1+2+3+4+...+n=\frac{n\cdot\left(n+1\right)}{2}\)

Ta có:\(\frac{1+2+3+...+a}{a}< \frac{1+2+3+...+b}{b}\)

\(\Leftrightarrow\frac{\frac{a\left(a+1\right)}{2}}{a}< \frac{\frac{b\left(b+1\right)}{2}}{b}\)

\(\Leftrightarrow\frac{a\left(a+1\right)}{2a}< \frac{b\left(b+1\right)}{2b}\)

\(\Leftrightarrow\frac{a+1}{2}< \frac{b+1}{2}\)

\(\Leftrightarrow a+1< b+1\)

\(\Leftrightarrow a< b\)

\(A=2^0+2^1+2^3+.....+2^{2016}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)

\(\Rightarrow A=2A-A=2^{2017}-1\)

\(\Rightarrow A=B\)

26 tháng 12 2017

A=B

ban o0o lan đúng rồi đấy

17 tháng 9 2017

SO sánh :

\(2^3=8\)

\(3^2=9\)

CHÚ ý : \(8< 9\Rightarrow2^3< 3^2\)

VẬy suy ra : 23 < 32

17 tháng 9 2017

23=8

32=9

=> 8<9

Vậy 23 < 32

tk mình nha

3 tháng 4 2020

\(A=1+2+2^2+...+2^{49}\)

\(2A=2+2^2+2^3+...+2^{50}\)

\(2A-A=2^{50}-1\)

\(A=\left(2^2\right)^{25}-1=4^{25}-1< 4^{25}=B\)

6 tháng 4 2020

Ta có \(A=1+2+2^2+2^3+...+2^{49}\)

<=> 2A=2(1+2+22+23+....+249)

<=>2A=2+22+23+24+....+250

<=> 2A-A=(2+22+23+24+....+250)-(1+2+22+23+....+249)

<=> A=250-1

Lại có B=425=(22)25=250

=> A<B

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim