K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2024

Ta có \(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{2018}+2^{2019}\right)\)

\(A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2018}\left(1+2\right)\)

\(A=\left(1+2\right)\left(1+2^2+...+2^{2018}\right)\)\(⋮3\)

Hiển nhiên \(A>3\). Do đó A là hợp số.

28 tháng 1 2024

\(A=\left(1+2\right)\)\(\left(1+2^2+...+2^{2018}\right):3\)

Vậy ta có: A>3.

A là hợp số.

2 tháng 12 2015

cái đề này sai về Cho P là số...........?

2 tháng 12 2015

anh_hung_lang_la sướng ghê nói thế đã 1 l ike rùi

19 tháng 12 2018

\(A=2^{2^n}-1.Xét3TH:\)

\(+n=0\Rightarrow A=1\left(loại\right)\)

\(+n=1\Rightarrow A=3\left(lasonguyento\right)\)

\(+n\ge2\Rightarrow A=2^{4k}-1=\left(...6\right)-1=\left(.....5\right)⋮5va>5\left(lahopso\right)\)

19 tháng 12 2018

RẰNG LẠI LÀ 24K

21 tháng 10 2018

A là hợp số

21 tháng 10 2018

A=2+2^2+2^3+...+2^2018

A= (2+22)+.............+(22017+22018)

A=(2.1+2.2)+............+(22017.1+22017.2)

A=2.(1+2)+..............+22017.(1+2)

A=2.3+..................+22017.3

A=3.(2+......+22017

Vì A chia hết cho 3 => A sẽ là hợp số

Vậy A là hợp số

14 tháng 2 2016

câu hỏi tương tự nha bạn

14 tháng 2 2016

bai toan nay kho @gmail.com

9 tháng 5 2016

                                  a)               Vi n2 + 2006  la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006  hay (n+a)x(n-a) = 2006

                                                Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2

                                                   Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ

                                                  TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)

                                                   TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn 

                                                   suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4 

                                                  mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài

26 tháng 5 2018

a ) Đặt \(n^2+2006=a^2\left(a\in Z\right)\)

\(\Rightarrow2006=a^2-n^2=\left(a-n\right).\left(a+n\right)\)( 1 )

Mà ( a + n ) - ( a - n ) = 2n chia hết cho 2

=> a + n và a - n có cùng tính chẵn lẻ

TH1 : a + n và a - n cùng lẻ => ( a - n ) . ( a + n ) là số lẻ => trái với ( 1 )

TH2 : a + n và a -n cùng chẵn => ( a - n ) . ( a + n ) chia hết cho 4 => trái với 1 

Vậy ko có n thỏa man để \(n^2+2006\)là số chính phương

b ) Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 ( \(k\ne0\))

TH1 : n = 3k + 1 thì \(n^2+2006\)= \(\left(3k+1\right)^2\)+ 2006 \(=(9k^2+6k+2007)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

TH2 : n = 3k + 2 thì \(n^2+2006=\left(3k+2\right)^2=(9k^2+12k+2010)⋮3\)và lớn hơn 3

=> \(n^2+2006\)là hợp số

Vậy \(n^2+2006\)là hợp số