K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2017

\(x^2-4x-y^2=-3\)

\(x^4-4x+3=y^2\)

\(x^2-4x+4-1=y^2\)

\(\left(x-2\right)^2-1=y^2\)

\(\left(x-1\right)\left(x-3\right)=y.y\)

        \(\Rightarrow\hept{\begin{cases}x-1=y\\x-3=y\end{cases}\Rightarrow}\hept{\begin{cases}x=y+1\\x=3+y\end{cases}}\)

21 tháng 7 2016

1/\(x^2+5x+6=0\)

=>\(x^2+2x+3x+6=0\)

=>\(x\left(x+2\right)+3\left(x+2\right)=0\)

=>\(\left(x+2\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)

Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)

21 tháng 7 2016

giải mệt cả người mà có ai biết ơn đâu

23 tháng 7 2016

\(x^3+3x^2y+3xy^2+y^3-x-y=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)

23 tháng 7 2016

Ta có : \(x^3+3x^2y+3xy^2+y^3-x-y.\)

\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)

28 tháng 8 2016

\(pt\Leftrightarrow7\left(x+y\right)=3\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow3x^2-\left(3y+7\right)x+3y^2-7y=0\)

\(\Delta\text{(}x\text{)}=\left(3y+7\right)^2-4.3\left(3y^2-7y\right)=...\)

Để x nguyên thì Delta phải là số chính phương.

\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)

Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

    Vậy A max là 7 chỉ khi x=-2

15 tháng 8 2020

b) \(7-x^2-y^2-2\left(x+y\right)\)

\(=7-x^2-y^2-2x-2y\)

\(=-x^2-2x-1-y^2-2y-1+9\)

\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)

Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)

Vậy ...................

30 tháng 9 2018

a)  \(A=4x^2-12x+2010\)

\(=4x^2-12x+9+2001\)

\(=\left(2x-3\right)^2+2001\ge2001\)

Dấu "=" xảy ra khi:  \(x=\frac{3}{2}\)

Vậy....

28 tháng 10 2018

Ta có : (x3+y3)-2(x2-y2)+3(x+y)2

=(x+y)[(x2+xy+y2)-2(x+y)(x-y)+3(x+y)(x+y)]

=(x+y)(x2+xy+y2-2x+2y+3x+3y)

=(x+y)(x2+xy+y2+x+5y) : (x+y) = x2+xy+x+5y

Vậy (x3+y3)-2(x2-y2)+3(x+y)2 : (x+y)= x2+xy+x+5y

10 tháng 2 2020

(x-1)2=4x+1

<=> x2-2x+1=4x+1

<=>0=2x-x2

<=> x(2-x)=0

\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy x=0 hoặc x=2

10 tháng 2 2020

\(\left(x-1\right)^2=4x+1\)

\(\Leftrightarrow x^2-2x+1=4x+1\)

\(\Leftrightarrow x^2-2x-4x=1-1\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy\(x\in\left\{0;6\right\}\)