Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/\(x^2+5x+6=0\)
=>\(x^2+2x+3x+6=0\)
=>\(x\left(x+2\right)+3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Các câu sau làm tương tự câu 1, tách ghép khéo léo sẽ ra :)
\(x^3+3x^2y+3xy^2+y^3-x-y=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]=\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)
Ta có : \(x^3+3x^2y+3xy^2+y^3-x-y.\)
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)
\(A=3-4x-x^2=-\left(x^2+4x+4\right)+7=7-\left(x+2\right)^2\ge7\forall x\)
Dấu bằng xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy A max là 7 chỉ khi x=-2
b) \(7-x^2-y^2-2\left(x+y\right)\)
\(=7-x^2-y^2-2x-2y\)
\(=-x^2-2x-1-y^2-2y-1+9\)
\(=-\left(x+1\right)^2-\left(y+1\right)^2+9\le9\)
Max = 9 \(\Leftrightarrow\hept{\begin{cases}x+1=0\\y+1=0\end{cases}\Leftrightarrow}x=y=-1\)
Vậy ...................
a) \(A=4x^2-12x+2010\)
\(=4x^2-12x+9+2001\)
\(=\left(2x-3\right)^2+2001\ge2001\)
Dấu "=" xảy ra khi: \(x=\frac{3}{2}\)
Vậy....
(x-1)2=4x+1
<=> x2-2x+1=4x+1
<=>0=2x-x2
<=> x(2-x)=0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x=0 hoặc x=2
\(\left(x-1\right)^2=4x+1\)
\(\Leftrightarrow x^2-2x+1=4x+1\)
\(\Leftrightarrow x^2-2x-4x=1-1\)
\(\Leftrightarrow x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
Vậy\(x\in\left\{0;6\right\}\)
\(x^2-4x-y^2=-3\)
\(x^4-4x+3=y^2\)
\(x^2-4x+4-1=y^2\)
\(\left(x-2\right)^2-1=y^2\)
\(\left(x-1\right)\left(x-3\right)=y.y\)
\(\Rightarrow\hept{\begin{cases}x-1=y\\x-3=y\end{cases}\Rightarrow}\hept{\begin{cases}x=y+1\\x=3+y\end{cases}}\)