\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\dfrac{1}{2}\); (a,b thuộc R)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2024

- Từ điều kiện đề bài ta có: \(ax^2+bx+2\ne\pm\left(x^2-1\right)\)

Ở bài này, ta xét 2 trường hợp lớn:

1) Với \(a=0\). Ta xét 2 trường hợp nhỏ:

+ 1a) \(b\ne-2\):

Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=\lim\limits_{x\rightarrow1}bx+2=b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).

+ 1b) \(b=-2\). Ta có:

\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{-2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\lim\limits_{x\rightarrow1}\dfrac{-2}{x+1}=\dfrac{-2}{1+1}=-1\left(loại\right)\)

2) \(a\ne0\)

- Ta xét 3 trường hợp:

+2a) \(a+b+2=0\Rightarrow b=-2-a\). Khi đó tử thức \(ax^2+bx+2\) có nghiệm là 1 và có thể viết lại thành \(ax^2+bx+2=ax^2-\left(a+2\right)x+2=a\left(x-1\right)\left(x-x_0\right)\left(1\right)\) (x0 là nghiệm còn lại của đa thức).

\(\left(1\right)\Rightarrow ax^2-\left(a+2\right)x+2=ax^2-a\left(1+x_0\right)x+ax_0\)

\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1+x_0\right)\\2=ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{2}{a}\)

Vậy \(ax^2+bx+2=a\left(x-1\right)\left(x-\dfrac{2}{a}\right)=\left(x-1\right)\left(ax-2\right)\), với \(b=-a-2\)

\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax-2}{x+1}=\dfrac{a-2}{2}=\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-5\end{matrix}\right.\) \(\Rightarrow P=a.b=3.\left(-5\right)=-15\)

+2b) \(a-b+2=0\Rightarrow b=a+2\). Khi đó tử thức \(ax^2+bx+2\) có một nghiệm là -1 và có thể được viết lại thành: \(ax^2+bx+2=a\left(x+1\right)\left(x-x_0\right)\left(2\right)\) (x0 là nghiệm còn lại của tử thức).

\(\left(2\right)\Rightarrow ax^2+\left(a+2\right)x+2=a\left(x+1\right)\left(x-x_0\right)\)

\(\Rightarrow ax^2+\left(a+2\right)x+2=ax^2+a\left(1-x_0\right)-ax_0\)

\(\Rightarrow\left\{{}\begin{matrix}a+2=a\left(1-x_0\right)\\2=-ax_0\end{matrix}\right.\Rightarrow x_0=\dfrac{-2}{a}\)

Vậy \(ax^2+bx+2=\left(x+1\right)\left(ax+2\right)\)

\(\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}\)

 Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax+2=a+2\ne0\\\lim\limits_{x\rightarrow1}x-1=0\end{matrix}\right.\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax+2}{x-1}=\infty\) (loại)

+2c) Tử thức \(ax^2+bx+2\) không có nghiệm là 1 và -1. Làm tương tự như trường hợp 2b) (từ khúc tính lim).

Vậy \(P=-15\)

 

 

1 tháng 1 2024

Bỏ trường hợp 2c, sửa 2b:

-Tử thức \(ax^2+bx+2\) không có nghiệm là 1.

Ta có: \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow1}ax^2+bx+2=a+b+2\ne0\\\lim\limits_{x\rightarrow1}x^2-1=0\end{matrix}\right.\)

\(\Rightarrow\lim\limits_{x\rightarrow1}\dfrac{ax^2+bx+2}{x^2-1}=\infty\) (loại).

NV
31 tháng 1 2019

1/ \(\lim\limits_{x\rightarrow0}\dfrac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{2x}{\sqrt{1+x}+1}+\dfrac{x}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{2}{\sqrt{1+x}+1}+\dfrac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\right)=\dfrac{13}{12}\)

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-\sqrt{x+3}}{x^2-3x+2}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x+7}-2-\left(\sqrt{x+3}-2\right)}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{x-1}{\sqrt{x+3}+2}}{\left(x-1\right)\left(x-2\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}-\dfrac{1}{\sqrt{x+3}+2}}{x-2}=\dfrac{1}{6}\)

3/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-\sqrt{5-x^2}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{x^2+7}-2+2-\sqrt{5-x^2}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(x^2-1\right)}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{x^2-1}{2+\sqrt{5-x^2}}}{x^2-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\dfrac{1}{\sqrt[3]{\left(x^2+7\right)^2}+2\sqrt[3]{x^2+7}+4}+\dfrac{1}{2+\sqrt{5-x^2}}\right)=\dfrac{1}{3}\)

4/ \(\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-\sqrt[3]{8x+43}}{2x^2+3x-2}=\lim\limits_{x\rightarrow-2}\dfrac{\sqrt{x+11}-3-\left(\sqrt[3]{8x+43}-3\right)}{\left(2x-1\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{x+2}{\sqrt{x+11}+3}-\dfrac{8\left(x+2\right)}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{\left(2x-1\right)\left(x+2\right)}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\dfrac{1}{\sqrt{x+11}+3}-\dfrac{8}{\sqrt[3]{\left(8x+43\right)^2}+3\sqrt[3]{8x+43}+9}}{2x-1}=\dfrac{7}{270}\)

5/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-\sqrt[m]{1+bx}}{x}=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[n]{1+ax}-1-\left(\sqrt[m]{1+bx}-1\right)}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{ax}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{bx}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{a}{\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1}-\dfrac{b}{\sqrt[m]{\left(1+bx\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)

\(=\dfrac{a}{n}-\dfrac{b}{m}\)

6/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}-\sqrt{1+4x}+\sqrt{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\left(\sqrt[3]{1+6x}-1\right)+\sqrt{1+4x}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\dfrac{6x}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4x}{\sqrt{1+4x}+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{6\sqrt{1+4x}}{\sqrt[3]{\left(1+6x\right)^2}+\sqrt[3]{1+6x}+1}+\dfrac{4}{\sqrt{1+4x}+1}\right)=4\)

1 tháng 2 2018

a) lim= - 1/0 = - vô cùng

d) lim x(x^99-2)+1/ x(x^49-2)+1 =lim (x^99-2)/(x^49-2)=1

4 tháng 4 2017

a) Ta có (x - 2)2 = 0 và (x - 2)2 > 0 với ∀x ≠ 2 và (3x - 5) = 3.2 - 5 = 1 > 0.

Do đó = +∞.

b) Ta có (x - 1) và x - 1 < 0 với ∀x < 1 và (2x - 7) = 2.1 - 7 = -5 <0.

Do đó = +∞.

c) Ta có (x - 1) = 0 và x - 1 > 0 với ∀x > 1 và (2x - 7) = 2.1 - 7 = -5 < 0.

Do đó = -∞.



4 tháng 4 2017

Giỏi quá ta, chắc là hs cao tuổi nhất ...

28 tháng 4 2017

Tôi chẳng thể hiểu nổi

NV
1 tháng 2 2019

1/ \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+4x}.\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}.\sqrt[4]{1+8x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}.\sqrt[4]{1+8x}-\sqrt[3]{1+6x}}{x}+\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{1+6x}-1}{x}\)

Liên hợp dài quá ko muốn gõ tiếp, bạn tự đặt nhân tử chung rồi liên hợp nhé, kết quả ra 5

2/ \(\lim\limits_{x\rightarrow1}\dfrac{\sqrt[3]{1+7x}-2-\left(x^3-3x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{7\left(x-1\right)}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)^2\left(x+2\right)}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{7}{\sqrt[3]{\left(1+7x\right)^2}+2\sqrt[3]{1+7x}+4}-\left(x-1\right)\left(x+2\right)=\dfrac{7}{12}\)

3/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x^3-x^2+1}{2x^2+3x-1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1+\dfrac{1}{x^2}}{2+\dfrac{3}{x}-\dfrac{1}{x^2}}=-\infty\)

4/ \(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x}+\sqrt[3]{x}+\sqrt[4]{x}}{\sqrt{4x+1}}=\lim\limits_{x\rightarrow+\infty}\dfrac{1+\dfrac{1}{\sqrt[6]{x}}+\dfrac{1}{\sqrt[4]{x}}}{\sqrt{4+\dfrac{1}{x}}}=\dfrac{1}{\sqrt{4}}=\dfrac{1}{2}\)

5/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{x+\sqrt{x^2+2}}{\sqrt[3]{8x^3+x^2+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{1-\sqrt{1+\dfrac{2}{x^2}}}{\sqrt[3]{8+\dfrac{1}{x}+\dfrac{1}{x^3}}}=\dfrac{1-1}{\sqrt[3]{8}}=0\)

6/ \(\lim\limits_{x\rightarrow-\infty}\dfrac{\sqrt{4x^2+3x-7}}{\sqrt[3]{27x^3+5x^2+x-4}}=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{4+\dfrac{3}{x}-\dfrac{7}{x^2}}}{\sqrt[3]{27+\dfrac{5}{x}+\dfrac{1}{x^2}-\dfrac{4}{x^3}}}=\dfrac{-\sqrt{4}}{\sqrt[3]{27}}=\dfrac{-2}{3}\)

25 tháng 4 2017

a/ \(\lim\limits_{x\to 1} f(x)=\frac{x^{2}-5x + 6}{x-2} \)

\(<=>\lim\limits_{x\to 1} f(x)=\dfrac{(x-3)(x-2)}{x-2} \)

<=>\(\lim\limits_{x\to 1} f(x)=x-3 \)

\(<=>\lim\limits_{x\to 1} f(x)=-2\)