K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

Cách chứng minh hay như thế nào bạn nhỉ ?

1 tháng 12 2023

cách chứng minh nha

 

15 tháng 5 2015

Gọi d là ƯCLN của n và 2n+1

Ta có: n chia hết cho d

2n+1 chia hết cho d

=>2n chia hết cho d

2n+1 chia hết cho d

Ta có: (2n+1)-2n chia hết cho d

=>1 chia hết cho d 

=>d=1

=> ƯCLN của n và 2n+1 là 1

Vậy phân số \(\frac{n}{2n+1}\) là phân số tối giản

Gọi d là ƯCLN của n và 2n+1

Ta có: n chia hết cho d

2n+1 chia hết cho d

=>2n chia hết cho d

2n+1 chia hết cho d

Ta có: (2n+1)-2n chia hết cho d

=>1 chia hết cho d 

=>d=1

=> ƯCLN của n và 2n+1 là 1

Vậy phân số n/2n+1  là phân số tối giản

5 tháng 2 2016

Gọi ƯC( 4n+1; 6n+1 ) = d

 4n+1 ⋮ d  12n+3 ⋮ d

 6n+1 ⋮ ⇒ 12n+2 ⋮ d

 [ ( 12n+3 ) - ( 12n+2 ) ] ⋮ d

 1 ⋮ d  d = + 1

Vì ƯC( 4n+1; 6n+1 ) = + 1 nên \(\frac{4n+1}{6n+1}\) là p/s tối giản

5 tháng 2 2016

thanks nE N nên không cần + 1 nữa 

8 tháng 4 2016

gọi ƯCLN (2n+3;4n+8) là d

=> 2n+3 chia het cho d        ;       4n+8 chia hết cho d

=>2(2n+3) chia hết cho d

hay 4n+6 chia hết cho d

=>(4n+8)-(4n+6) chia hết cho d

           2 chia hết cho d

=> d thuộc {1;2}

*) xét d=2 thì 2n+3 chia hết cho 2

                   mà 2n chia hết cho 2 nhưng 3 không chia hết cho 2

=>d khác 2

=> d =1

vậy phân số 2n+3/4n+8 là phân số tối giản với mọi n thuôc N

8 tháng 4 2016

gọi d là UCLN(2n+3;4n+8)

ta có:

4n+8-2(2n+3) chia hết d

=>4n+8-4n+3 chia hết cho d

=>2 chia hết cho d

=>d thuộc {1,2}

mà ps trên tối giản khi d=1

24 tháng 5 2016

Gọi UCLN(n+1;2n+3) = d, ta có:

n+1 chia hết cho d

=> 2n+2 chia hết cho d

2n + 3 chia hết cho d

=> (2n+3)-(2n+2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

(2n-2n)+(3-2) chia hết cho d

1 chia hết cho d

=> d thuốc Ư(1) ={1;-1}

=> \(\frac{n+1}{2n+3}\) là phân số tối giản

Chúc bạn học tốt!hihi

24 tháng 5 2016

Vì ps n+1 / 2n + 3 là ps tối giản nên n +1 và 2n +3 là 2 số nguyên tố cùng nhau
Gọi d là ƯC của n +1 và 2n + 3
Ta có : (2n +3 ) - ( 2(n+1) ) chia hết cho d
   Hay : (2n +3 ) - ( 2n +2 ) chia hết cho d
 =>         2n +3 - 2n - 2 chia hết cho d
   =>                     1 chia hết cho d => d ϵ Ư ( 1 ) = + 1
Vậy n + 1 / 2n + 3 là phân số tối giản 

16 tháng 3 2017

Giả sử 7n+10 và 5n+7 đều chia hết cho d

<=> 5(7n+10) và 7(5n+7) đều chia hết cho d

<=> 35n+50 và 35n+49 đều chia hết cho d

=> (35n+50) - (35n+49) chia hết cho d

35n+50-35n-49 chia hết cho d

<=> 1 chia hết cho d

=> d=1

Vậy \(\frac{7n+10}{5n+7}\)là phân số tối giản

24 tháng 11

Hướng dẫn giải:

Gọi d là ƯCLN của 5n + 7 và 7n + 10

⇒ (5n + 7)⋮ d và (7n + 10)⋮ d

⇒ [7(5n + 7) - 5(7n + 10)] = -1⋮ d

⇒ d = 1 hoặc d = -1

Vậy phân thức đã cho tối giản với ∀n ∈ N 

15 tháng 3 2020

Trần Minh Anh             

em tham khảo bài làm của bạn Bảo Bình ; bạn ấy trình bày rất rõ ràng ; dễ hiểu

https://olm.vn/hoi-dap/detail/56495853286.html

em chịu khó đánh link này lên google nhé

19 tháng 3 2020

gọi UCLN(a,a+b)=d

Ta có a chia hết cho d

          a+b chia hết cho d

=>(a+b)-a chia hết cho d

=>b chia hết cho d

mà a chia hết cho d

=> d E UC(a,b) mà UCLN(a,b)=1 vì a/b tối giản

=>d =1

Vậy a/a+b tối giản

14 tháng 2 2018

\(\frac{3n}{3n+1}\).

Gọi ƯCLN ( 3n ; 3n + 1 ) là d .

\(\Rightarrow\)3n ⋮ d

         3n + 1 ⋮ d

\(\Rightarrow\)3n + 1 - 3n ⋮ d
\(\Rightarrow\) 1 ⋮ d

\(\Rightarrow\) d = 1 .

\(\Rightarrow\) 3n và 3n + 1 là hai số nguyên tố cùng nhau .

Vậy \(\frac{3n}{3n+1}\) là phân số tối giản .

:)

14 tháng 2 2018

Gọi \(ƯCLN\left(3n;3n+1\right)\) là \(d\)   

\(\Rightarrow\)\(3n⋮d\) và \(\left(3n+1\right)⋮d\)

\(\Rightarrow\)\(\left(3n-3n-1\right)⋮d\) 

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n;3n+1\right)=\left\{1;-1\right\}\)

 Vậy \(\frac{3n}{3n+1}\) là phân số tối giản 

26 tháng 3 2015

Để chứng minh  12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau

Gọi ƯCLN(12n+1,30n+2)=d             (d∈N)

=> 12n+1 chia hết cho d       => 5(12n+1) chia hết cho d       => 60n+5 chia hết cho d

     30n+2 chia hết cho d       => 2(30n+2) chia hết cho d       => 60n+4 chia hết cho d

=>       (60n+5)-(60n+4) chia hết cho d

=>        1 chia hết cho d

=> d∈Ư(1)={1}

=> d=1

=> ƯCLN(12n+1,30n+2)=1

Vậy 12n+1/30n+2 là phân số tối giản

26 tháng 3 2015

Mình có cách giải khác này:

Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d              60n+5 chia hết cho d
                                      =>
     30n +2chia hết cho d              60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)