Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ab + b = a + 5
< = > b ( a + 1 ) - ( a + 1 ) = 4
< = > ( a + 1 ) ( b - 1 ) = 4
Do a, b nguyên nên a + 1 , b - 1 nguyên
= > a + 1 , b - 1 thuộc Ư(4) \(\in\left\{\pm1;\pm2;\pm4\right\}\)
và ( a + 1 ) ( b - 1 ) = 4
Xét bảng sau :
a + 1 | 1 | 4 | -1 | -4 | 2 | -2 |
b - 1 | 4 | 1 | -4 | -1 | 2 | -2 |
a | 0 | 3 | -2 | -5 | 1 | -3 |
b | 5 | 2 | -3 | 0 | 3 | -1 |
Vậy ....
2a-ab+b=5 <=> a(2-b) - (2-b) = 3 <=> (a-1)(2-b) = 3
Tới đây phân tích 3 = 1 x 3 = -1 x (-3) = ...
Ghép cặp với a - 1 và 2 - b là ra :)
\(3a-b+ab=8\)
\(\Rightarrow\) \(a\left(b+3\right)-\left(b+3\right)=5\)
\(\Rightarrow\) \(\left(a-1\right)\left(b+3\right)=5=1.5=\left(-1\right).\left(-5\right)\)
Lập bảng, ta tìm được a = 2, b = 2
\(3a-b+ab=8\\ \Rightarrow a\left(3+b\right)-b-3=8-3\\ \Rightarrow a\left(b+3\right)-\left(b+3\right)=5\\ \Rightarrow\left(b+3\right)\left(a-1\right)=5\)
Vì \(a,b\in N\Rightarrow\left\{{}\begin{matrix}a-1\in Z,b+3\in N,b+3\ge3\\a-1,b+3\inƯ\left(5\right)\end{matrix}\right.\)
Ta có bảng:
a-1 | 1 |
b+3 | 5 |
a | 2 |
b | 2 |
Vậy \(\left(a,b\right)\in\left\{\left(2;2\right)\right\}\)
\(\left(ab\right)\left(bc\right)\left(ac\right)=2.6.3\Leftrightarrow\left(abc\right)^2=6^2\Leftrightarrow abc=6;abc=-6\)
+ abc =6 => a =(abc)/ bc = 6/ 6 =1
b = (abc)/ ac = 6/3 =2
c =(abc)/ ab = 6/ 2 = 3
+ abc =-6 => a = -1
b = -2
c =-3
1\