\(3x^2-4xy+2y^2-3x+2007\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

Đặt \(A=3x^2-4xy+2y^2-3x+2007\)

       \(A=2x^2-4xy+2y^2+x^2-3x+2007\)

      \(A=2\left(x-y\right)^2+x^2-2.\frac{3}{2}+\frac{9}{4}+\frac{8019}{4}\)

        \(A=2\left(x-y\right)^2+\left(x-\frac{3}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

              Dấu = xảy ra khi \(\hept{\begin{cases}x-y=0\\x-\frac{3}{2}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=y\\x=\frac{3}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)

Vậy Min A = \(\frac{8019}{4}\) khi \(x=y=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
6 tháng 8 2017

Lời giải:

Ta có \(A=3x^2-4xy+2y^2-3x+2007\)

\(\Leftrightarrow A=(x^2-3x+\frac{9}{4})+2(x^2-2xy+y^2)+\frac{8019}{4}\)

\(\Leftrightarrow A=(x-\frac{3}{2})^2+2(x-y)^2+\frac{8019}{4}\)

Thấy \((x-\frac{3}{2})^2,(x-y)^2\geq 0\) nên \(A\geq \frac{8019}{4}\)

Vậy \(A_{\min}=\frac{8019}{4}\Leftrightarrow x=y=\frac{3}{2}\)

NV
12 tháng 12 2021

\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)

\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)

\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)

28 tháng 11 2018
https://i.imgur.com/2w0Ab4b.jpg
6 tháng 4 2020

Bạn có ghi nhầm đề không vậy? 

22 tháng 6 2019

C= 2x+ 4y2 + 4xy - 3x -1

 = (x2 + 4xy + 4y2) + (x2 - 3x + 9/4) - 13/4

 = (x+2y)2 + (x-3/2)2 - 13/4

  (x+2y)2 >=0

    (x-3/2)2 >=0

=) MinC= -13/4  (dấu '=' xảy ra khi x=3/2 ; y=-3/4)

vậy ....

chúc bn hc tốt

22 tháng 6 2019

cảm ơn bạn

24 tháng 11 2022

a: =2(x^2+2x+9/2)

=2(x^2+2x+1+7/2)

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: \(=2\left(\dfrac{3}{2}x^2-2xy+y^2-\dfrac{3}{2}x+\dfrac{2007}{2}\right)\)

\(=2\left(x^2-2xy+y^2+\dfrac{1}{2}x^2-\dfrac{3}{2}x+\dfrac{2007}{2}\right)\)

\(=2\left(x-y\right)^2+x^2-3x+2007\)

\(=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+2004.75>=2004.75\)

Dấu = xảy ra khi x=y=3/2

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= ( x2 + 4xy + 4y2 + 3x + 6y + 9/4 ) + ( y2 + 2y + 1 ) + 91/4

= [ ( x + 2y )2 + 2( x + 2y ).3/2 + (3/2)2 ] + ( y + 1 )2 + 91/4

= ( x + 2y + 3/2 )2 + ( y + 1 )2 + 91/4\(\ge\)91/4

Dấu "=" xảy ra <=>\(\orbr{\begin{cases}\left(x+2y+\frac{3}{2}\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy minA = 91/4 <=>\(\orbr{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

6 tháng 12 2020

A = x2 + 5y2 + 4xy + 3x + 8y + 26

= (x2 + 4xy + 4y2) + (3x + 6y) + 9/4 + (y2 + 2y + 1) + \(\frac{91}{4}\)

\(\left(x+2y\right)^2+3\left(x+2y\right)+\frac{9}{4}+\left(y+1\right)^2+\frac{91}{4}\)

\(\left(x+2y+\frac{3}{2}\right)^2+\left(y+1\right)^2+\frac{91}{4}\ge\frac{91}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+2y+\frac{3}{2}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+2y=-\frac{3}{2}\\y=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)

Vậy Min A = 91/4 <=> x = 1/2 ; y = -1