K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2023

Giúp mình với

15 tháng 11 2023

72

16 tháng 1 2016

Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)

7 tháng 7 2016

Đơn giản mà bạn

16 tháng 8 2016

Mình làm một câu ví dụ thui nha

\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)

\(\frac{5x}{50}=2\Rightarrow x=20\)

\(\frac{y}{6}=2\Rightarrow y=12\)

\(\frac{2z}{42}=2\Rightarrow x=42\)

mấy câu khác thì tương tự

tíc mình nha bạn

Gợi ý nhá

Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.

b)  Bạn chỉ cần cho tử và mẫu mũ 3 lên.  theé là dễ r

27 tháng 10 2018

\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

tự tính tiếp =)

2 tháng 1 2021

a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)

AD t/c DTS bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)

b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

AD t/c DTS bằng nhau ta có:

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)

Tự tìm x

c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Tự áp dụng

 
17 tháng 10 2021

cậu xem titan à

16 tháng 10 2021

TÌM X Y Z

29 tháng 1 2020

a) Có x, y, z tỉ lệ với 3, 5, 7 tức là \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)

x + y + z =210

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{210}{15}=14\)

\(\Rightarrow\left\{{}\begin{matrix}x=14.3=42\\y=14.5==70\\z=14.7=98\end{matrix}\right.\)

vậy...

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\Rightarrow\left\{{}\begin{matrix}x=6.5=30\\y=6.6=36\\z=6.7=42\end{matrix}\right.\)

vậy...

c)Vì BCNN (3; 4) = 12

\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.4}=\frac{y}{3.4}=\frac{x}{8}=\frac{y}{12}\)

\(\Rightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{4.3}=\frac{z}{5.3}=\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x+3y+5z}{16+36+75}=\frac{127}{127}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x=1.8=8\\y=1.12=12\\z=1.15=15\end{matrix}\right.\)

Vậy...

a) Ta có:

x, y, z tỉ lệ với 3, 5, 7

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{210}{15}=14\)

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=14\Rightarrow\left\{{}\begin{matrix}x=42\\y=70\\z=98\end{matrix}\right.\)

b)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=6\Rightarrow\left\{{}\begin{matrix}x=30\\y=36\\z=42\end{matrix}\right.\)

c)\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{4}=\frac{y}{3}.\frac{1}{4}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)

\(\frac{z}{5}=\frac{y}{4}\Rightarrow\frac{z}{5}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{z}{15}=\frac{y}{12}\) (2)

Từ (1) và (2) ⇒\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{16}=\frac{3y}{36}=\frac{5z}{75}=\frac{2x+3y+5z}{16+36+75}=\frac{127}{127}=1\)

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=1\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=15\end{matrix}\right.\)

8 tháng 11 2017

Ta có \(\frac{x}{2}=\frac{y}{9};\frac{y}{4}=\frac{z}{5}\)và \(2x+3y+5z=127\)

\(\Rightarrow\frac{x}{8}=\frac{y}{36}=\frac{z}{45}\)

Theo tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{8}=\frac{y}{36}=\frac{z}{45}=\frac{2x+3y+5z}{16+108+225}=\frac{127}{349}\)

\(\Rightarrow x=\frac{127}{349}.8=\frac{1016}{349}\)

\(y=\frac{127}{349}.36=\frac{4572}{349}\)

\(z=\frac{127}{349}.45=\frac{5715}{349}\)

31 tháng 10 2019

Hình như đề sai hay sao ấy bn à???

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30