Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)
biết 2x+3y+5z=127
tính x,y,z (nhớ giải đầy đủ nhé)
Mình làm một câu ví dụ thui nha
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{5x}{50}=2\Rightarrow x=20\)
\(\frac{y}{6}=2\Rightarrow y=12\)
\(\frac{2z}{42}=2\Rightarrow x=42\)
mấy câu khác thì tương tự
tíc mình nha bạn
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
a,Ta có:\(2x+3y-2=186\Rightarrow2x+3y=188\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y}{2.15+3.20}=\frac{188}{90}=\frac{94}{45}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=\frac{94}{45}\Rightarrow x=\frac{94}{3}\\\frac{y}{20}=\frac{94}{45}\Rightarrow x=\frac{376}{9}\\\frac{z}{28}=\frac{94}{45}\Rightarrow x=\frac{2632}{45}\end{cases}}\)
b,Ta có:\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
AD t/c DTS bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{18}=\frac{2x+3y-z}{2.15+3.20-18}=\frac{372}{62}=6\)
Tự tìm x
c,\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Tự áp dụng
a) Có x, y, z tỉ lệ với 3, 5, 7 tức là \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)
x + y + z =210
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{210}{15}=14\)
\(\Rightarrow\left\{{}\begin{matrix}x=14.3=42\\y=14.5==70\\z=14.7=98\end{matrix}\right.\)
vậy...
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
\(\Rightarrow\left\{{}\begin{matrix}x=6.5=30\\y=6.6=36\\z=6.7=42\end{matrix}\right.\)
vậy...
c)Vì BCNN (3; 4) = 12
\(\Rightarrow\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2.4}=\frac{y}{3.4}=\frac{x}{8}=\frac{y}{12}\)
\(\Rightarrow\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{y}{4.3}=\frac{z}{5.3}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x+3y+5z}{16+36+75}=\frac{127}{127}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.8=8\\y=1.12=12\\z=1.15=15\end{matrix}\right.\)
Vậy...
a) Ta có:
x, y, z tỉ lệ với 3, 5, 7
⇒\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{x+y+z}{3+5+7}=\frac{210}{15}=14\)
⇒\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=14\Rightarrow\left\{{}\begin{matrix}x=42\\y=70\\z=98\end{matrix}\right.\)
b)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)
⇒\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=6\Rightarrow\left\{{}\begin{matrix}x=30\\y=36\\z=42\end{matrix}\right.\)
c)\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2}.\frac{1}{4}=\frac{y}{3}.\frac{1}{4}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{z}{5}=\frac{y}{4}\Rightarrow\frac{z}{5}.\frac{1}{3}=\frac{y}{4}.\frac{1}{3}\Rightarrow\frac{z}{15}=\frac{y}{12}\) (2)
Từ (1) và (2) ⇒\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{16}=\frac{3y}{36}=\frac{5z}{75}=\frac{2x+3y+5z}{16+36+75}=\frac{127}{127}=1\)
⇒\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=1\Rightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=15\end{matrix}\right.\)
Ta có \(\frac{x}{2}=\frac{y}{9};\frac{y}{4}=\frac{z}{5}\)và \(2x+3y+5z=127\)
\(\Rightarrow\frac{x}{8}=\frac{y}{36}=\frac{z}{45}\)
Theo tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{36}=\frac{z}{45}=\frac{2x+3y+5z}{16+108+225}=\frac{127}{349}\)
\(\Rightarrow x=\frac{127}{349}.8=\frac{1016}{349}\)
\(y=\frac{127}{349}.36=\frac{4572}{349}\)
\(z=\frac{127}{349}.45=\frac{5715}{349}\)
4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)
Do đó: x=-16; y=-24; z=-30
Giúp mình với
72