\(\frac{1}{2.3}\)+ \(\frac{1}{3.4}\)\(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{49}{100}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{2}-\frac{1}{100}\)

\(=\frac{50}{100}-\frac{2}{100}=\frac{49}{100}\)

~~~~~~~~~~~Ai thấy đúng thì nhanh k nha ~~~~~~

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~ 

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~

2 tháng 5 2017

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2005.2006}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}\)\(+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\frac{1}{2}-\frac{1}{2006}\)

\(\frac{501}{1003}\)

2 tháng 5 2017

  \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(=\frac{1}{2}-\frac{1}{2006}\)   >> Đúng 100% nha!! ^ ^

25 tháng 3 2017

1)xE{2;0}                                                                                                                                                                                          2)abcd=a000+b00+c0+d=a.1000+b.100+c.10+d=(a.1000+b.96+c.8)+(4.b+2.c+d)=8.(a.125+b.12+c)+(d+2.c+4.b).                                    vì 8 chia hết cho 8 =>8.(a.125+b.12+c) chia hết cho 8.                                                                                                                           Mà d+2.c+4.b chia hết cho 8.                                                                                                                                                                =>8.(a.125+b.12+c)+(d+2.c+4.b) chia hết cho 8 hay abcd chia hết cho 8.                                                                                             3)3.S=1.2.3+2.3.3+3.4.3+...+99.100.3.                                                                                                                                                =>3S=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)                                                                                                   =>3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100.                                                                                                =>3S=99.100.101.=>3s=979902=>S=326634.                                 

25 tháng 3 2017

mình ko hiểu câu 3 và câu 1 lắm

24 tháng 7 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

24 tháng 7 2019

Sửa lại đề bài nha bạn:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-......-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

Chúc em học tốt nhé!

5 tháng 2 2020

\(X=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{99\cdot100}\)

\(X=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(X=1-\frac{1}{100}=\frac{99}{100}\).

5 tháng 2 2020

x = 1/1*2 + 1/2*3 +1/3*4 + 1/4*5 + ... + 1/99*100

x = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100

x = 1- 1/100

x = 99/100

10 tháng 8 2018

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

    \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)

   \(=\frac{1}{2}-\frac{1}{50}\)

   \(=\frac{12}{25}\)

10 tháng 8 2018

\(B=\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+...+\frac{1}{23.27}\)

    \(=\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\right)\)

    \(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{23}-\frac{1}{27}\right)\)

  \(=\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)

  \(=\frac{1}{4}.\frac{8}{27}=\frac{2}{27}\)

31 tháng 3 2017

sai bét

31 tháng 3 2017

dễ lắm

s=

................

kb đi 

27 tháng 5 2020

Công thức :\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

Áp dụng:

\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Vậy.................

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

29 tháng 9 2016

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}.\)

\(A=\frac{1}{2}-\frac{1}{100}=\frac{100}{200}-\frac{2}{200}=\frac{98}{200}\)

29 tháng 9 2016

\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{50}{100}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)

22 tháng 2 2018

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2008}{2010}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{1004}{2010}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2010}\)
\(\Leftrightarrow x+1=2010\)
\(\Leftrightarrow x=2009\)