K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2023

A = 5 + 5² + 5³ + ... + 5²⁰²³

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 5

⇒ A = (5²⁰²⁴ - 5)/4

5 tháng 11 2023

A = 5 + 5² + 5³ + ... + 5²⁰²³

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 5

⇒ A = (5²⁰²⁴ - 5)/4

Ta có : 
A = 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\)
5A = 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\)
=> 5A - A = ( 5 + \(5^2\)+\(5^3\)+\(5^4\)+..+ \(5^{2024}\) ) - ( 1 + 5 + \(5^2\)+\(5^3\)+...+ \(5^{2023}\) ) 
=> 4A =  \(5^{2024}\)- 1
Nhận thấy : 
                  \(5^{2024}\) - 1 > ​​\(5^{2024}\)
=> 4A <  \(5^{2024}\) 
                            V
ậy 4A <  \(5^{2024}\) ​

Thấy hay tick hộ mk vs ạ

 

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 1:

$B=1+3+3^2+3^3+...+3^{100}$

$=1+(3+3^2)+(3^3+3^4)+...+(3^{99}+3^{100})$

$=1+3(1+3)+3^3(1+3)+...+3^{99}(1+3)$

$=1+(1+3)(3+3^3+...+3^{99})=1+4(3+3^3+....+3^{99})$

$\Rightarrow B$ chia 4 dư 1.

AH
Akai Haruma
Giáo viên
16 tháng 12 2023

Bài 2:

$C=5-5^2+5^3-5^4+...+5^{2023}-5^{2024}$

$5C=5^2-5^3+5^4-5^5+...+5^{2024}-5^{2025}$

$\Rightarrow C+5C=5-5^{2025}$

$6C=5-5^{2025}$

$C=\frac{5-5^{2025}}{6}$

20 tháng 10 2023

\(=60-\dfrac{\left[36+64\right]}{25}\)

\(=60-4=56\)

20 tháng 10 2023

\(60-[(36+4^3):5^2]\\=60-[(36+64):25]\\=60-(100:25)\\=60-4\\=56\)

14 tháng 10 2023

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(2A-A=2^2+2^3+...+2^{21}-2-2^2-...-2^{20}\)

\(A=2^{21}-2\)

___________

\(B=5+5^2+...+5^{50}\)

\(5B=5^2+5^3+...+5^{51}\)

\(5B-B=5^2+5^3+...+5^{51}-5-5^2-...-5^{50}\)

\(4B=5^{51}-5\)

\(B=\dfrac{5^{51}-5}{4}\)

___________

\(C=1+3+3^2+...+3^{100}\)

\(3C=3+3^2+...+3^{101}\)

\(3C-C=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}\)

\(2C=3^{101}-1\)

\(C=\dfrac{3^{101}-1}{2}\)

14 tháng 10 2023

2A= 2(2+22+23+...+219+220)

2A= 22+23+24+...+220+221

2A-A=(22+23+24+...+220+221)-(2+22+23+...+219+220)

A=221-2

Vậy A=221-2

Làm tương tự nhee

17 tháng 12 2023

a) 134 . 132 = 136

b) 716 : 713 = 73

c) 26 . 2 = 27

d) (52023 : 52019) . 52 = 54 . 52 = 56

17 tháng 12 2023

a) \(13^4\cdot13^2=13^{4+2}=13^6\)

b) \(7^{16}:7^{13}=7^{16-13}=7^3\)

c) \(2^6\cdot2=2^{6+1}=2^7\)

d) \(\left(5^{2023}:5^{2019}\right)\cdot5^2\)

\(=5^{2023-2019}\cdot5^2\)

\(=5^2\cdot5^2\)

\(=5^{2+2}=5^4\)

\(A=5\left(1+5\right)+...+5^{11}\left(1+5\right)\)

\(=6\cdot\left(5+...+5^{11}\right)⋮30\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

a.

$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$

$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$

$\Rightarrow S=2^{2018}-1$

b.

$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$

$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$

$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
 

AH
Akai Haruma
Giáo viên
30 tháng 9 2023

Câu c, d bạn làm tương tự a,b. 

c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$

d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$

18 tháng 10 2023

A = 5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰

⇒ 5A = 5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹

⇒ 4A = 5A - A

= (5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹) - (5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰)

= 5⁵¹ - 5

⇒ A = (5⁵¹ - 5) : 4

5A=5+5^2+...+5^2023

=>4A=5^2023-1

=>\(A=\dfrac{5^{2023}-1}{4}\)

\(2B-A=\dfrac{5^{2023}}{4}-\dfrac{5^{2023}-1}{4}=\dfrac{1}{4}\)

2 tháng 1 2023