Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(R_{tđ}=R_1+R_2+R_3=3+5+7=15\Omega\)
\(I_1=I_2=I_3=I_m=2A\)
\(U_1=I_1\cdot R_1=2\cdot3=6V\)
\(U_2=I_2\cdot R_2=2\cdot5=10V\)
\(U_3=I_3\cdot R_3=2\cdot7=14V\)
\(MCD:R1nt\left(R2//R3\right)\)
\(=>R=R1+R23=R1+\dfrac{R2\cdot R3}{R2+R3}=18+\dfrac{20\cdot30}{20+30}=30\Omega\)
\(=>I=I1=I23=\dfrac{U}{R}=\dfrac{12}{30}=0,4A\)
Ta có: \(U23=U2=U3=U-U1=12-\left(0,4\cdot18\right)=4,8V\)
\(=>\left\{{}\begin{matrix}I2=\dfrac{U2}{R2}=\dfrac{4,8}{20}=0,24A\\I3=\dfrac{U3}{R3}=\dfrac{4,8}{30}=0,16A\end{matrix}\right.\)
a)\(R_1ntR_2\Rightarrow R_{tđ}=R_1+R_2=50+25=75\Omega\)
b)\(I_1=I_2=I=0,8A\)
\(U_1=I_1\cdot R_1=0,8\cdot50=40V\)
\(U_2=I_2\cdot R_2=0,8\cdot25=20V\)
\(U=U_1+U_2=40+20=60V\)
a. Điện trở tương đương của đoạn mạch:
\(R_{tđ}=R_1+R_2=75\left(\Omega\right)\)
b. Hiệu điện thế hai đầu điện trở R1 là:
\(U_1=IR_1=0,8.50=40\left(V\right)\)
Hiệu điện thế hai đầu điện trở R2 là:
\(U_2=IR_2=0,8.25=20\left(V\right)\)
Hiệu điện thế ở hai đầu đoạn mạch là:
\(U=U_1+U_2=40+20=60\left(V\right)\)
\(a,R_{tđ}=R_1+R_2=5+15=20\Omega\\ b,I_1=I_2=I=\dfrac{U}{R_{tđ}}=\dfrac{20}{20}=1A\\ U_1=I.R_1=1.5=5V\\ U_2=U-U_1=20-5=15V\)
a) Đtrở tương đương của đoạn mạch
\(R_{tđ}=R_1+R_2=5+15=20\left(ôm\right)\)
b) CĐDĐ đi qua mạch là:
\(I=\dfrac{U}{R_{tđ}}=\dfrac{20}{20}=1\left(A\right)\)
Vì R1 nt R2: => \(I=I_1=I_2=1A\)
HĐT qua mỗi đèn là:
\(U_1=I_1\cdot R_1=1\cdot5=5\left(V\right)\)
\(U_2=I_2\cdot R_2=1\cdot15=15\left(V\right)\)
a)
Điện trở tương đương của điện trở 2 và 3:
Vì R2//R3 nên R23= \(\dfrac{R_2.R_3}{R_2+R_3}=\dfrac{15.10}{15+10}=6\Omega\)
Điện trở tương đương toàn mạch:
Vì R1 nt R23 nên \(R_{tđ}=R_1+R_{23}=30+6=36\Omega\)
b)
Cường độ dòng điện mạch chính:
\(I=\dfrac{U_{AB}}{R_{tđ}}=\dfrac{24}{36}=\dfrac{2}{3}\)A
Cường độ dòng điện chạy qua điện trở R1:
Vì R1 nt R23 nên I1= I23 = I = \(\dfrac{2}{3}\)A
Hiệu điện thế giữa hai đầu điện trở R1:
I1= \(\dfrac{U_1}{R_1}=>U_1=R_1.I_1=30.\dfrac{2}{3}=20V\)
Hiệu điện thế giữa hai đầu điện trở R2 và R3:
Vì R1 nt R23 nên U1 + U23 = U
=> U23= U - U1 = 24 - 20 = 4V
Hiệu điện thế giữa hai đầu điện trở R2:
Vì R2 // R3 nên U2 = U3 = U23 = 4V
Cường độ dòng điện giữa hai đầu điện trở R2:
\(I_2=\dfrac{U_2}{R_2}=\dfrac{4}{15}A\)
Cường độ dòng điện giữa hai đầu điện trở R3:
\(I_3=\dfrac{U_3}{R_3}=\dfrac{4}{10}=\dfrac{2}{5}A\)
c)
Công của dòng điện sinh ra trong 5 phút:
\(A=\dfrac{U^2}{R^{ }}t=\dfrac{24^2}{36}.300=4800\left(J\right)\)
Tóm tắt :
Biết : \(R_1=30\Omega\) ; \(R_2=15\Omega\) ; \(R_3=10\Omega\)
\(U_{AB}=24V\)
\(t=5'=300s\)
Tính : a. \(R_{AB}\)
b. \(I_1=?\) ; \(I_2=?\) ; \(I_3=?\)
c. \(A=?\)
Giải
a. Ta có \(R_2\)//\(R_3\) nên :
\(R_{23}=\dfrac{R_2.R_3}{R_2+R_3}=\dfrac{15.10}{15+10}=6\Omega\)
Vì \(R_1\) nt \(R_{23}\) nên điện trở tương đương toàn mạch là :
\(R_{AB}=R_1+R_{23}=30+6=36\Omega\)
b. \(R_1\) nt \(R_{23}\) nên :
\(I_1=I_{23}=I_{AB}=\dfrac{U_{AB}}{R_{AB}}=\dfrac{24}{36}=\dfrac{2}{3}A\)
\(\Rightarrow U_{23}=I_{23}.R_{23}=\dfrac{2}{3}.6=4V\)
\(\Rightarrow U_2=U_3=4V\) (do \(R_2\) // \(R_3\))
CĐDĐ qua mỗi điện trở là :
\(I_2=\dfrac{U_2}{R_2}=\dfrac{4}{15}A\)
\(I_3=\dfrac{4}{10}=0,4A\)
c. Công của dòng điện sinh ra trong đoạn mạch AB trong 5' là :
\(A=P.t=U.I.t=24.\dfrac{2}{3}.300=4800J\)
Đáp số : a. \(R_{AB}=36\Omega\)
b. \(I_1=\dfrac{2}{3}A\) ; \(I_2=\dfrac{4}{15}A\) ; \(I_3=0,4A\)
c. \(A=4800J\)
\(R_1//R_2\)
a)Điện trở tương đương mạch:
\(R_m=\dfrac{R_1\cdot R_2}{R_1+R_2}=\dfrac{15\cdot30}{15+30}=10\Omega\)
b)\(R_1//R_2\Rightarrow U_1=U_2=U_m=24V\)
\(I_1=\dfrac{24}{15}=1,6A;I_2=\dfrac{24}{30}=0,8A\)
c)Cường độ dòng điện qua mạch:
\(I=I_1+I_2=1,6+0,8=2,4A\)
Công dòng điện sinh ra trong đoạn mạch:
\(A=UIt=24\cdot2,4\cdot10\cdot60=34560J\)
\(R_{tđ}=R_1+R_2=3+6=9\left(\Omega\right)\)
\(I=I_1=I_2=\dfrac{U_2}{R_2}=\dfrac{12}{6}=2\left(A\right)\)
Do \(\dfrac{U_1}{U_2}=\dfrac{R_1}{R_2}\Rightarrow\dfrac{U_1}{U_2}=\dfrac{3}{6}=\dfrac{1}{2}\Rightarrow U_1< U_2\)
\(U_1=I_1.R_1=2.3=6\left(V\right)\)
\(a,R_{tđ}=R_1+R_2=20+30=50\Omega\)
\(I_2=I_1=I_m=\dfrac{U_2}{R_2}=\dfrac{15}{30}=0,5\left(A\right)\)
\(b,A=P.t=0,5.50.0,5.20.60=15000\left(J\right)\)
15000(J)