K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2023

Ta có:

\(H=2+2^2+2^3+...+2^{60}\)

\(H=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(H=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(H=3\cdot\left(2+2^3+...+2^{59}\right)\)

Vậy H chia hết cho 3

_______

\(H=2+2^2+2^3+...+2^{60}\)

\(H=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(H=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)

\(H=7\cdot\left(2+2^4+...+2^{58}\right)\)

Vậy H chia hết cho 7

__________

\(H=2+2^2+2^3+...+2^{60}\)

\(H=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(H=2\cdot\left(1+2+4+8\right)+2^5\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)

\(H=15\cdot\left(2+2^5+...+2^{57}\right)\)

Vậy H chia hết cho 15 

16 tháng 10 2023
 

�=2+22+23+...+260

Ta có:

 �=2.1+2+23.1+2+...+259.(1+2)

 �=2.3+23.3+...+259.3

�=3.2+23+...+259 ⋮3

Ta có:

 �=2.1+2+22+24.1+2+22+...+228.1+2+22 

 �=2.7+24.7+...+258.7
 �=7.2+24+...+258 ⋮7

Ta có:

 �=2.1+2+22+23+25.1+2+22+23+...+257.1+2+22+23 

�=2.15+25.15+...+257.15

 �=15.2+25+...+257 ⋮15

Vậy H chia hết cho  3;  7; 15.

nhớ tik đúng nha!!!

5 tháng 10 2021

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

4 tháng 11 2021

dcv

AH
Akai Haruma
Giáo viên
29 tháng 10 2023

Lời giải:

$A=(2+2^2+2^3)+(2^4+2^5+2^6)+....+(2^{58}+2^{59}+2^{60})$

$=2(1+2+2^2)+2^4(1+2+2^2)+....+2^{58}(1+2+2^2)$

$=(1+2+2^2)(2+2^4+....+2^{58})$

$=7(2+2^4+....+2^{58})\vdots 7$.

29 tháng 10 2023

A = 2+22+23+...+260

A = 2.(1+2+22) + 24.(1+2+22) + ... + 258.(1+2+22)

A = 2.7+24.7+...+258.7

A= 7. (2+24+...+258) chia hết cho 7

--> A chia hết cho 7 (ĐPCM)

 

21 tháng 10 2023

a: \(G=8^8+2^{20}\)

\(=2^{24}+2^{20}\)

\(=2^{20}\left(2^4+1\right)=2^{20}\cdot17⋮17\)

b: Sửa đề: \(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)⋮3\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)⋮7\)

\(H=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+2^5+...+2^{57}\right)⋮15\)

c: \(E=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{1989}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{1989}\right)⋮13\)

\(E=1+3+3^2+3^3+...+3^{1991}\)

\(=\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+3^{1986}+3^{1987}+3^{1988}+3^{1989}+3^{1990}+3^{1991}\)

\(=364\left(1+3^6+...+3^{1986}\right)⋮14\)

Bây giờ cậu cần không thế;D

 

13 tháng 7 2021

YTP] Huấn Hoa Hồng Chế

chỉ có làm thì mới có ăn

23 tháng 10 2022

ko giúp thì  đừng nhắn thế

20 tháng 12 2021

\(A=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+...+2^{57}\right)⋮15\)

2 tháng 11 2023

loading...

2 tháng 11 2023

Sửa dùm mình dòng cuối cùng là " Vậy \(A⋮5\) " nha. Cảm ơn bạn.