Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=2+2^2+2^3+...+2^{60}\)
\(2S=2\cdot\left(2+2^2+2^3+...+2^{60}\right)\)
\(2S=2^2+2^3+2^4+...+2^{61}\)
\(2S-S=\left(2^2+2^3+2^4+...+2^{61}\right)-\left(2+2^2+2^3+...+2^{60}\right)\)
\(S=2^{61}-2\)
\(S=2\left(2^{60}-1\right)\)
Mà: \(2\cdot\left(2^{60}-1\right)\) không phải là số chính phương
\(\Rightarrow S\) không phải là số chính phương
S=2+2^2+......+2^100
S.2=2.(2+2^2+........+2^100)
S.2=2^2+2^3+........+2^101
S.2-S=(2^2+2^3+....+2^101) - (2+2^2+.....+2^100)
S=2^101-2
suy ra : S+2= (2^101 - 2) +2 =2^101
Vậy S+2 không là số chính phương
Ta có : S = 1 + 3 + 32 + ... + 398
=> 3S = 3 + 32 + 33 + .... + 399
Khi đó 3S - S = (3 + 32 + 33 + .... + 399) - (1 + 3 + 32 + ... + 398)
=> 2S = 399 - 1 = 396.33 - 1 = (34)24.(...7) - 1 = (...1)24.(...7) - 1 = (...7) - 1 = (....6)
=> S = (...3)
=> S không là số chính phương (Vì S có chữ số tận cùng là 3)
Toán lớp 3
\(S=2^1+2^2+2^3+...+2^{60}\)
\(2\cdot S=2^2+2^3+2^4+...+2^{61}\)
\(S=2^{61}-2\)
\(\Rightarrow S⋮2\)
Nếu S chia hết cho 2 thì \(S⋮2^2\) (nếu số chính phương chia hết cho số đó thì số chính phương cũng chia hết cho bình phương của số đó)
Ta có:
\(2^{61}=2^2\cdot2^{59}=4\cdot2^{59}⋮4\)
Mà \(2⋮4̸\) nên \(S=2^{61}-2\)\(⋮̸\)\(4\)
Vậy S không phải là số chính phương.