Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{19}{12}+\left|\dfrac{-5}{2}\right|+\left(\dfrac{3}{2}\right)^2=\dfrac{19}{12}+\dfrac{5}{2}+\dfrac{9}{4}\)
\(=\dfrac{19+5.6+9.3}{12}=\dfrac{76}{12}=\dfrac{19}{3}\)
b) \(\dfrac{2}{11}.\dfrac{16}{9}-\dfrac{2}{11}.\dfrac{7}{9}=\dfrac{2}{11}\left(\dfrac{16}{9}-\dfrac{7}{9}\right)=\dfrac{2}{11}.1=\dfrac{2}{11}\)
Bài 2:
Áp dụng t/c dtsbn:
\(\dfrac{a}{8}=\dfrac{b}{3}=\dfrac{a-b}{8-3}=\dfrac{55}{5}=11\)
\(\Rightarrow\left\{{}\begin{matrix}x=11.8=88\\b=11.3=33\end{matrix}\right.\)
a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)
\(=1-1+\dfrac{1}{72}\)
\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)
b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)
\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)
\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)
\(=-\left(-\dfrac{173}{1287}\right)\)
\(=\dfrac{173}{1287}\)
c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)
\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{-49}{50}\)
a) \(=\left(13\dfrac{2}{7}+2\dfrac{5}{7}\right):\left(-\dfrac{8}{9}\right)\)
\(=16:\dfrac{-8}{9}=\dfrac{-8\cdot\left(-2\right)\cdot9}{-8}=-18\)
b)
\(=\left(\dfrac{-6}{11}\cdot\dfrac{11}{-6}\right)\cdot\dfrac{7\cdot10\cdot\left(-2\right)}{10}\)
\(=-14\)
c) \(=\dfrac{-1}{2}\cdot\dfrac{4}{3}\cdot\dfrac{-7}{2}\)
\(=\dfrac{-1\cdot2\cdot2\cdot\left(-7\right)}{2\cdot3\cdot2}=\dfrac{7}{3}\)
Lời giải:
a)
\(\frac{\frac{2}{3}-\frac{2}{5}+\frac{2}{7}-\frac{2}{9}+\frac{2}{11}}{\frac{8}{3}-\frac{8}{5}+\frac{8}{7}-\frac{8}{9}+\frac{8}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}{8\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\frac{1}{9}+\frac{1}{11}\right)}\) \(=\frac{2}{8}=\frac{1}{4}\)
b)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)....\left(\frac{1}{50}-1\right)\left(\frac{1}{51}-1\right)\)
\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}....\frac{1-50}{50}.\frac{1-51}{2}=\frac{(-1)(-2)(-3)...(-49)(-50)}{2.3.4....50.51}\)
\(=\frac{(-1)^{50}.1.2.3....49.50}{2.3.4...50.51}=\frac{1}{51}\)
Lời giải:
\(299A=\frac{300-1}{1.300}+\frac{301-2}{2.301}+\frac{302-3}{3.302}+....+\frac{400-101}{101.400}\)
\(=1-\frac{1}{300}+\frac{1}{2}-\frac{1}{301}+\frac{1}{3}-\frac{1}{302}+...+\frac{1}{101}-\frac{1}{400}\)
\(=(1+\frac{1}{2}+....+\frac{1}{101})-(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400})(1)\)
Mặt khác:
$101B=\frac{102-1}{1.102}+\frac{103-2}{2.103}+...+\frac{400-299}{299.400}$
$=1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+....+\frac{1}{299}-\frac{1}{400}$
$=(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{299})-(\frac{1}{102}+\frac{1}{103}+....+\frac{1}{400})$
$=(1+\frac{1}{2}+...+\frac{1}{101})-(\frac{1}{300}+\frac{1}{301}+...+\frac{1}{400})(2)$
Từ $(1);(2)\Rightarrow 299A=101B$
$\Rightarrow \frac{A}{B}=\frac{101}{299}$
\(a.\left[-\dfrac{6}{11}.\dfrac{11}{-6}\right].\dfrac{7}{10}.\left(-20\right)=1.7.\left(-2\right)=-14\)
\(b.\dfrac{-1}{2}:\dfrac{3}{4}.\dfrac{-7}{2}=\dfrac{7}{4}:\dfrac{3}{4}=\dfrac{7}{3}\)
\(c.\dfrac{93}{7}:-\dfrac{8}{9}+\dfrac{19}{7}:\dfrac{-8}{9}=\left(\dfrac{93}{7}+\dfrac{19}{7}\right):-\dfrac{8}{9}=\dfrac{-9}{8}.\dfrac{112}{7}=-18\)
`a)` Xét tử số phân số M :
\(2012-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{2012}{2020}\\ =\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{2012}{2020}\right)\\ =\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{2020}\\ =24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)\)
Ta được : \(M=\dfrac{24\left(\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}\right)}{\dfrac{1}{27}+\dfrac{1}{30}+\dfrac{1}{33}+...+\dfrac{1}{6060}}=24\)
`b)` Xét tử số phân số N :
\(\dfrac{1}{1.300}+\dfrac{1}{2.301}+\dfrac{1}{3.302}+...+\dfrac{1}{101.400}\\ =\dfrac{1}{299}.\left(\dfrac{299}{1.300}+\dfrac{299}{2.301}+\dfrac{299}{3.302}+...+\dfrac{299}{101.400}\right)\\ =\dfrac{1}{299}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Xét mẫu số phân số N :
\(\dfrac{1}{1.102}+\dfrac{1}{2.103}+\dfrac{1}{3.104}+...+\dfrac{1}{299.400}\\ =\dfrac{1}{101}.\left(\dfrac{101}{1.102}+\dfrac{101}{2.103}+\dfrac{101}{3.104}+...+\dfrac{101}{299.400}\right)\\ =\dfrac{1}{101}.\left(1-\dfrac{1}{102}+\dfrac{1}{2}-\dfrac{1}{103}+\dfrac{1}{3}-\dfrac{1}{104}+...+\dfrac{1}{299}-\dfrac{1}{400}\right)\)
\(=\dfrac{1}{101}.\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)\)
Ta được: \(N=\dfrac{\dfrac{1}{299}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}{\dfrac{1}{101}\left(1-\dfrac{1}{300}+\dfrac{1}{2}-\dfrac{1}{301}+\dfrac{1}{3}-\dfrac{1}{302}+...+\dfrac{1}{101}-\dfrac{1}{400}\right)}\\ =\dfrac{\dfrac{1}{299}}{\dfrac{1}{101}}=\dfrac{101}{299}\)
\(B=\dfrac{1}{11}+\dfrac{1}{11^2}+\dfrac{1}{11^3}+...+\dfrac{1}{11^{99}}+\dfrac{1}{11^{100}}\\ 11B=1+\dfrac{1}{11}+\dfrac{1}{11^2}+...+\dfrac{1}{11^{98}}+\dfrac{1}{11^{99}}\\ 11B-B=1+\dfrac{1}{11}+\dfrac{1}{11^2}+...+\dfrac{1}{1^{99}0}-\dfrac{1}{11}-\dfrac{1}{11^2}-\dfrac{1}{11^3}-...-\dfrac{1}{11^{100}}\\ 10B=1-\dfrac{1}{11^{99}}\\ B=\dfrac{1-\dfrac{1}{11^{99}}}{10}\)
có : `1-1/(11^99)<1`
\(\Rightarrow\dfrac{1-\dfrac{1}{11^{99}}}{10}< \dfrac{1}{10}\)
hay `B<1/10`
tỉ số của a / b là (92 - 1/9 - 2/ 10 - 3/11 - ... - 92/100) trên 1/45 + 1/50 + ... + 1/500 :)) hay ngắn tắc hơn là A/B cho nhanh :)))))))))))))))
\(A=\left(1+1+...+1\right)-\left(\dfrac{1}{9}+\dfrac{2}{10}+...+\dfrac{92}{100}\right)\)𝓒𝓸́ 92 𝓼𝓸̂́ 1
\(A=\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+...+\left(1-\dfrac{92}{100}\right)\)
\(A=\dfrac{8}{9}+\dfrac{8}{10}+...+\dfrac{8}{100}\)
\(A=8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(B=\dfrac{1}{45}+\dfrac{1}{50}+...+\dfrac{1}{500}\)
\(B=\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{8.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}{\dfrac{1}{5}.\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{100}\right)}\\ \Rightarrow\dfrac{A}{B}=\dfrac{8}{\dfrac{1}{5}}=40\)
𝓥𝓪̣̂𝔂 𝓽𝓲̉ 𝓼𝓸̂́ 𝓬𝓾̉𝓪 𝓐 𝓿𝓪̀ 𝓑 𝓵𝓪̀ 40