K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

pt ở đề bài <=> x^2-2x(y-2)-(3y-1)=0 (1) 

để pt có nghiệm x nguyên thì delta phải là số chính phương 

xét delta=[2(y-2)]^2+4=a^2 => a^2-(2y-4)^2=4=>(a-2y+4)(a+2y-4)=4 đến đây giải pt ước số rồi tìm y => tìm x 

-nghĩ vậy chả biết có đúng không <(")

18 tháng 2 2024

5x2+2y+y2-4x-40=0

△=(-4)2-4.5.(2y+y2-40)

△=16-40y-20y2+800

△=-(784+40y+20y2)

△=-(32y+8y+16y2+4y2+16+4+764)

△=-[(4y+4)2+(2y+2)2+764]<0

=>PHƯƠNG TRÌNH VÔ NGHIỆM.

13 tháng 12 2024

3x + 9xy - 6y
 

 

19 tháng 1 2019

Bài 1 : dùng ĐK chặn x;y

Bài 2: pt trùng phương đặt x8 = y rồi dùng Vi-ét cho pt 1 rồi Vi-ét cho pt 2

Bài 3: rút x;y theo m rồi quy P về pt chỉ có ẩn m -> tổng bình phương cộng vs 1 hằng số

Bài 4: Đi ngủ .VV

19 tháng 1 2019

Cách chặn x ; y của a khó quá :( nghĩ mãi ko ra , đành làm cách khác

\(1,ĐKXĐ:x\ge-y\)

Từ hệ \(\Rightarrow\hept{\begin{cases}\sqrt{x^2+x+2}=y+\sqrt{x+y}\\x+1=y+\sqrt{x+y}\end{cases}}\)

        \(\Rightarrow\sqrt{x^2+x+2}=x+1\)

        \(\Leftrightarrow\hept{\begin{cases}x\ge-1\\x^2+x+2=x^2+2x+1\end{cases}}\)

       \(\Leftrightarrow x=1\)

Thế vào hệ có \(\sqrt{y+1}=2-y\)

          \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y+1=y^2-4y+4\end{cases}}\)

         \(\Leftrightarrow\hept{\begin{cases}-1\le y\le2\\y^2-5y+3=0\end{cases}}\)

         \(\Leftrightarrow y=\frac{5-\sqrt{13}}{2}\)

Vậy hệ có nghiệm \(\hept{\begin{cases}x=1\\y=\frac{5-\sqrt{13}}{2}\end{cases}}\)

Giải hệ phương trình: 1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\) 2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\) 3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\) 4....
Đọc tiếp

Giải hệ phương trình:

1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)

2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)

3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)

4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)

5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)

6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)

7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)

0