K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9

Đây nhé bé

Câu1

\(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).

Suy ra:

\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)

Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).

\(\Rightarrow\) Giá trị nhỏ nhất của \(A\)\(\boxed{2024}\), đạt tại \(x = 0\).

Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )

Đặt \(n = 2022\). Khi đó:

\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)

Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).

Ta gọi k là luỹ thừa của cơ số

\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)

Xét hiệu:

\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)

Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)

Do đó:

\(A = a_{2022} < a_{2021} = B .\)

\(\Rightarrow B>A\)

Câu3

Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).

\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)

Vậy kết quả bằng \(\frac{5}{3}\).

Câu 3:

\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)

\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)

\(=\frac53\)

Câu 2:

\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)

\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)

Ta có: \(2022^{2023}+1>2022^{2022}+1\)

=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)

=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)

=>2022A<2022B

=>A<B

Câu 1:

\(\left|x\right|\ge0\forall x\)

=>\(\left|x\right|+1\ge1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)

=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)

Dấu '=' xảy ra khi x=0

11 tháng 9 2023

Ta có :

\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)

mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)

     \(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:

$A=1-3+3^2-3^3+...+3^{2022}-\frac{3^{2023}}{4}$

$3A=3-3^2+3^3-3^4+...+3^{2023}-\frac{3^{2024}}{4}$

$\Rightarrow A+3A=1+3^{2023}-\frac{3^{2023}}{4}-\frac{3^{2024}}{4}$

$\Rightarrow 4A=1$

$\Rightarrow A=\frac{1}{4}$

25 tháng 7 2023

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)

\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)

Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)

2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)

2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)

Suy ra  A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2

Vậy A < 2

25 tháng 7 2023

\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)

\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

 

 

AH
Akai Haruma
Giáo viên
25 tháng 3 2023

Lời giải:
$A=\frac{1}{4}(1-3+3^2-3^3+...+3^{2022}-3^{2023})$

$3A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024})$

$3A+A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024}+1-3+3^2-3^3+...+3^{2022}-3^{2023})$

$4A=\frac{1}{4}(1-3^{2024})$

$A=\frac{1}{16}(1-3^{2024})$

1 tháng 12 2023

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)

Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)

      TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1 

      TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)

      TS =  2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))

A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)

 A = 2023

1 tháng 12 2023

Em cảm ơn ạ

AH
Akai Haruma
Giáo viên
13 tháng 1 2024

Lời giải:

Ta thấy: $(x-2022)^2\geq 0$ với mọi $x$

$\Rightarrow (x-2022)^2+2\geq 2$

$\Rightarrow \frac{6}{(x-2022)^2+2}\leq 3$ với mọi $x$ (1)

$|y-2023|\geq 0$ với mọi $y$

$\Rightarrow |y-2023|+3\geq 3$ với mọi $y$ (2)

Từ (1); (2) suy ra để $\frac{6}{(x-2022)^2+2}=|y-2023|+3$ thì:

$\frac{6}{(x-2022)^2+2}=|y-2023|+3=3$

$\Rightarrow x-2022=y-2023=0$

$\Leftrightarrow x=2022; y=2023$