Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đây nhé bé
Câu1
Vì \(\mid x \mid \geq 0 \Rightarrow \mid x \mid + 1 \geq 1\).
Do đó \(\left(\right. \mid x \mid + 1 \left.\right)^{10} \geq 1^{10} = 1\).
Suy ra:
\(A = \left(\right. \mid x \mid + 1 \left.\right)^{10} + 2023 \geq 1 + 2023 = 2024.\)
Dấu “=” chỉ xảy ra khi \(\mid x \mid = 0 \Leftrightarrow x = 0\).
\(\Rightarrow\) Giá trị nhỏ nhất của \(A\) là \(\boxed{2024}\), đạt tại \(x = 0\).
Câu 2 ( câu này kiến thức nâng cao nhé em nên là khi em đọc lời giải sẽ có khó hiểu nhé )
Đặt \(n = 2022\). Khi đó:
\(A = \frac{n^{2022} + 1}{n^{2023} + 1} , B = \frac{n^{2021} + 1}{n^{2022} + 1} .\)
Xét tổng quát với \(a_{k} = \frac{n^{k} + 1}{n^{k + 1} + 1} , \left(\right. n > 1 \left.\right)\).
Ta gọi k là luỹ thừa của cơ số
\(a_{k} > a_{k - 1} \textrm{ }\textrm{ } \Longleftrightarrow \textrm{ }\textrm{ } \left(\right. n^{k} + 1 \left.\right)^{2} > \left(\right. n^{k + 1} + 1 \left.\right) \left(\right. n^{k - 1} + 1 \left.\right) .\)
Xét hiệu:
\(\left(\right.n^{k}+1\left.\right)^2-\left(\right.n^{k+1}+1\left.\right)\left(\right.n^{k-1}+1\left.\right)=-n^{k-1}\left(\right.n-1\left.\right)^2<0\)
Vậy \(a_{k} < a_{k - 1}\), tức dãy \(\left(\right. a_{k} \left.\right)\) giảm dần theo \(k\)
Do đó:
\(A = a_{2022} < a_{2021} = B .\)
\(\Rightarrow B>A\)
Câu3
Ta đổi : \(27 = 3^{3}\), \(9 = 3^{2}\), \(125 = 5^{3}\).
\(\frac{5^{16} \cdot \left(\right. 3^{3} \left.\right)^{7}}{\left(\right. 5^{3} \left.\right)^{5} \cdot \left(\right. 3^{2} \left.\right)^{11}} = \frac{5^{16} \cdot 3^{21}}{5^{15} \cdot 3^{22}} = 5^{16 - 15} \cdot 3^{21 - 22} = \frac{5}{3} .\)
Vậy kết quả bằng \(\frac{5}{3}\).
Câu 3:
\(\frac{5^{16}\cdot27^7}{125^5\cdot9^{11}}\)
\(=\frac{5^{16}\cdot\left(3^3\right)^7}{\left(5^3\right)^5\cdot\left(3^2\right)^{11}}=\frac{5^{16}\cdot3^{21}}{5^{15}\cdot3^{22}}\)
\(=\frac53\)
Câu 2:
\(2022A=\frac{2022^{2023}+2022}{2022^{2023}+1}=1+\frac{2021}{2022^{2023}+1}\)
\(2022B=\frac{2022^{2022}+2022}{2022^{2022}+1}=1+\frac{2021}{2022^{2022}+1}\)
Ta có: \(2022^{2023}+1>2022^{2022}+1\)
=>\(\frac{2021}{2022^{2023}+1}<\frac{2021}{2022^{2022}+1}\)
=>\(\frac{2021}{2022^{2023}+1}+1<\frac{2021}{2022^{2022}+1}+1\)
=>2022A<2022B
=>A<B
Câu 1:
\(\left|x\right|\ge0\forall x\)
=>\(\left|x\right|+1\ge1\forall x\)
=>\(\left(\left|x\right|+1\right)^{10}\ge1^{10}=1\forall x\)
=>\(\left(\left|x\right|+1\right)^{10}+2023\ge1+2023=2024\forall x\)
Dấu '=' xảy ra khi x=0

Ta có :
\(\dfrac{10^{2023}}{10^{2024}}=\dfrac{10^{2022}}{10^{2023}}\)
mà \(\dfrac{10^{2023}}{10^{2024}}>\dfrac{10^{2023}-3}{10^{2024}-3}\)
\(\dfrac{10^{2022}}{10^{2023}}< \dfrac{10^{2022}+1}{10^{2023}+1}\)
\(\Rightarrow\dfrac{10^{2023}-3}{10^{2024}-3}< \dfrac{10^{2022}+1}{10^{2023}+1}\)

Lời giải:
$A=1-3+3^2-3^3+...+3^{2022}-\frac{3^{2023}}{4}$
$3A=3-3^2+3^3-3^4+...+3^{2023}-\frac{3^{2024}}{4}$
$\Rightarrow A+3A=1+3^{2023}-\frac{3^{2023}}{4}-\frac{3^{2024}}{4}$
$\Rightarrow 4A=1$
$\Rightarrow A=\frac{1}{4}$

Ta có \(A=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\)
\(2A-A=\left(1+\dfrac{2}{2}+\dfrac{3}{2^2}+...+\dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\)\(A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\)
Đặt B = \(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\)
2B = \(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\)
2B - B = \(\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2021}}+\dfrac{1}{2^{2022}}\right)\)B = 2 - \(\dfrac{1}{2^{2022}}\)
Suy ra A = 2 - \(\dfrac{1}{2^{2022}}\) - \(\dfrac{2023}{2^{2023}}\) < 2
Vậy A < 2
\(A=\dfrac{1}{2}+\dfrac{2}{2^{2}}+\dfrac{3}{2^{3}}+...+\dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\)
\(2A=1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\\2A-A=\left(1+\dfrac22+\dfrac3{2^2}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2021}}+\dfrac{2023}{2^{2022}}\right)-\left(\dfrac12+\dfrac2{2^2}+\dfrac3{2^3}\ +\,.\!.\!.+\ \dfrac{2022}{2^{2022}}+\dfrac{2023}{2^{2023}}\right)\\A=1+\dfrac12+\dfrac1{2^3}\ +\,.\!.\!.+\ \dfrac1{2^{2021}}+\dfrac1{2^{2022}}-\dfrac{2023}{2^{2023}}\\2\left(A+\dfrac{2023}{2^{2023}}\right)=2+1+\dfrac12+\dfrac1{2^2}\ +\,.\!.\!.+\ \dfrac1{2^{2020}}+\dfrac1{2^{2021}}\\A+\dfrac{2023}{2^{2023}}=2-\dfrac1{2^{2022}}\\A=2-\dfrac1{2^{2022}}+\dfrac{2023}{2^{2023}}<2\)

Lời giải:
$A=\frac{1}{4}(1-3+3^2-3^3+...+3^{2022}-3^{2023})$
$3A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024})$
$3A+A=\frac{1}{4}(3-3^2+3^3-3^4+....+3^{2023}-3^{2024}+1-3+3^2-3^3+...+3^{2022}-3^{2023})$
$4A=\frac{1}{4}(1-3^{2024})$
$A=\frac{1}{16}(1-3^{2024})$

A = \(\dfrac{\dfrac{2022}{1}+\dfrac{2021}{2}+\dfrac{2020}{3}+...+\dfrac{1}{2022}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}}\)
Xét TS = \(\dfrac{2022}{1}\) + \(\dfrac{2021}{2}\) \(\dfrac{2020}{3}\) +... + \(\dfrac{1}{2022}\)
TS = (1 + \(\dfrac{2021}{2}\)) + (1 + \(\dfrac{2020}{3}\)) + ... + ( 1 + \(\dfrac{1}{2022}\)) + 1
TS = \(\dfrac{2023}{2}\) + \(\dfrac{2023}{3}\) +...+ \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2023}\)
TS = 2023.(\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\) +...+ \(\dfrac{1}{2023}\))
A = \(\dfrac{2023.\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}{\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2023}\right)}\)
A = 2023

Lời giải:
Ta thấy: $(x-2022)^2\geq 0$ với mọi $x$
$\Rightarrow (x-2022)^2+2\geq 2$
$\Rightarrow \frac{6}{(x-2022)^2+2}\leq 3$ với mọi $x$ (1)
$|y-2023|\geq 0$ với mọi $y$
$\Rightarrow |y-2023|+3\geq 3$ với mọi $y$ (2)
Từ (1); (2) suy ra để $\frac{6}{(x-2022)^2+2}=|y-2023|+3$ thì:
$\frac{6}{(x-2022)^2+2}=|y-2023|+3=3$
$\Rightarrow x-2022=y-2023=0$
$\Leftrightarrow x=2022; y=2023$