Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left(1-\frac{1}{10}\right)\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \frac{9}{10}\cdot100-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ 90-\left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=89\\ \left[\frac{5}{2}:\left(X+\frac{206}{100}\right)\right]:\frac{1}{2}=1\\ \frac{5}{2}:\left(X+\frac{206}{100}\right)=\frac{1}{2}\\ X+\frac{206}{100}=5\\ X=\frac{500}{100}-\frac{206}{100}\\ X=\frac{294}{100}=\frac{147}{50}\)
Vậy \(X=\frac{147}{50}\)
( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ......+ 1/9 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89 . 1/2
( 1 - 1/10) . 100 - [ 5/2 : ( x + 103/50 ) ] = 89/2
90 - 5/2 : ( x + 103/50 ) = 89/2
5/2 : ( x + 103/50 ) = 90 - 89/2
5/2 : ( x + 103/50 ) = 91/2
x + 103/50 = 5/2 : 91/2
x + 103/50 = 5/91
x = 5/91 - 103/50
x = -9,123/4550
a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow\left|3x-\frac{1}{2}\right|=0\) \(\Rightarrow\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)
\(\Rightarrow3x-\frac{1}{2}=0\) \(\Rightarrow\frac{1}{2}y+\frac{3}{5}=0\)
\(3x=\frac{1}{2}\) \(\frac{1}{2}y=\frac{-3}{5}\)
\(x=\frac{1}{2}:3\) \(y=\left(\frac{-3}{5}\right):\frac{1}{2}\)
\(x=\frac{1}{6}\) \(y=\frac{-6}{5}\)
KL: x = 1/6; y = -6/5
b) \(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)
mà \(\left|\frac{3}{2}x+\frac{1}{9}\right|>0;\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|>0\)
=> trường hợp |3/2x +1/9| + |1/5y -1/2| < 0 không thế xảy ra
\(\Rightarrow\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)
rùi bn lm tương tự như phần a nhé!
Giải:
Vì:
\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|\ge0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|\ge0\end{matrix}\right.\)
Nên dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|3x-\dfrac{1}{2}\right|=0\\\left|\dfrac{1}{2}y+\dfrac{3}{5}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{2}y+\dfrac{3}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=\dfrac{1}{2}\\\dfrac{1}{2}y=-\dfrac{3}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\le0\)
Vì:
\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|\ge0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|\ge0\end{matrix}\right.\)
Dấu "=" xảy ra, khi và chỉ khi:
\(\left\{{}\begin{matrix}\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|=0\\\left|\dfrac{1}{5}y-\dfrac{1}{2}\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{1}{5}y-\dfrac{1}{2}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x=-\dfrac{1}{9}\\\dfrac{1}{5}y=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
a: \(=\dfrac{17}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9=1+\dfrac{2}{9}-15=-14+\dfrac{2}{9}=-\dfrac{126}{9}+\dfrac{2}{9}=-\dfrac{124}{9}\)
b: \(=\dfrac{-11}{23}\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}=\dfrac{-22}{23}-\dfrac{1}{23}=-1\)
c: \(=\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\dfrac{4-3-1}{24}=0\)
d: \(=\dfrac{12}{7}\left(19+\dfrac{5}{8}-15-\dfrac{1}{4}\right)=\dfrac{12}{7}\cdot\dfrac{35}{8}=\dfrac{15}{2}\)
Ta có :
M = \(\frac{\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{1+\left(\frac{1}{99}+1\right)+\left(\frac{2}{98}+1\right)+\left(\frac{3}{91}+1\right)+...+\left(\frac{98}{2}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{\frac{100}{100}+\frac{100}{99}+\frac{100}{98}+\frac{100}{97}+...+\frac{100}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(\frac{100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}\)
M = \(100\)
N = \(\frac{92-\frac{1}{9}-\frac{2}{10}-\frac{3}{11}-...-\frac{92}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\left(1-\frac{1}{9}\right)+\left(1-\frac{2}{10}\right)+\left(1-\frac{3}{11}\right)+...+\left(1-\frac{92}{100}\right)}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{45}+\frac{1}{50}+\frac{1}{55}+...+\frac{1}{500}}\)
N = \(\frac{8.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{5}.\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}\)
N = \(40\)
\(\Rightarrow\)M : N = \(\frac{100}{40}\%=250\%\)
\(\frac{9}{10}.100-\left(\frac{5}{2}\left(y+\frac{206}{100}\right)\right):\frac{1}{2}=89\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=89.\frac{1}{2}\)
\(90-\left(\frac{5}{2}\left(y+\frac{103}{50}\right)\right)=\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=90-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{180}{2}-\frac{89}{2}\)
\(\frac{5}{2}\left(y+\frac{103}{50}\right)=\frac{91}{2}\)
\(y+\frac{103}{50}=\frac{91}{2}.\frac{2}{5}\)
\(y+\frac{103}{50}=\frac{91}{5}\)
\(y=\frac{91}{5}-\frac{103}{50}\)
\(y=\frac{910}{50}-\frac{103}{50}\)
\(y=\frac{807}{50}\)