Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cô đã duyệt nôi dung bài của em, bài viết bổ ích nội dung phù hợp. Tuy bài của em có chèn link của trang khác(Điều này không cho phép trên olm) .Nhưng trang hoc24 được phép hoạt động trên olm nên cô cho hiển thị lên trang chủ của olm rồi em nhá.
Các em chú ý tuyệt đối không chèn link của trang web khác lên olm ngoại trừ trang hoc24. Nhưng nội dung của đường link vẫn phải được kiểm soát để tránh tin rác em ạ
Cảm ơn em vì những chia sẻ của em, đóng góp của em trên olm
Chúc em học tập vui vẻ và hiệu quả cùng olm.

Cảm ơn em đã chia sẻ bài viết rất hay và bổ ích
Cảm ơn bạn đã chia sẽ bài viết nhé. Mình sẽ áp dụng rất nhiều đó!

a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>\(HB=HC=\frac{BC}{2}=\frac{12}{2}=6\left(\operatorname{cm}\right)\)
ΔAHB vuông tại H
=>\(HA^2+HB^2=AB^2\)
=>\(HA^2=10^2-6^2=100-36=64=8^2\)
=>HA=8(cm)
b: Diện tích tam giác ABC là:
\(S_{ABC}=\frac12\cdot AH\cdot BC=\frac12\cdot12\cdot8=4\cdot12=48\left(\operatorname{cm}^2\right)\)


a. áp dụnng định lý pythagore vào △ ABC vuông tại A ta có:
\(BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\left(\operatorname{cm}\right)\)
b. diện tích △ ABC là:
\(\frac{6\cdot8}{2}=24\left(\operatorname{cm}^2\right)\)
c. ta có: \(BC\cdot AH=AB\cdot AC\)
\(\Rightarrow AH=\frac{AB\cdot AC}{BC}=\frac{6\cdot8}{10}=4,8\left(\operatorname{cm}\right)\)
áp dụng định lý pythagore vào △ ABH vuông tại H ta được:
\(HB=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6\left(\operatorname{cm}\right)\)
áp dụng định lý pythagore vào △ AHC vuông tại H ta được:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4\left(\operatorname{cm}\right)\)
d. vì M là trung điểm của cạnh BC
⇒ MB = MC = BC : 2 = 10 : 2 = 5 (cm)
ta có: BH + HM = BM
⇒ HM = BM - BH = 5 - 3,6 = 1,4 (cm)
áp dụng định lý pythagore vào △ AHM vuông tại H ta có:
\(AM=\sqrt{AH^2+HM^2}=\sqrt{4,8^2+1,4^2}=5\left(\operatorname{cm}\right)\)

áp dụng cosi a^2+1>=2a tương tự và cộng vế tương ứng suy ra đpcm
\(a^2+b^2+2\ge2\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2+2-2\left(a+b\right)\ge0\)
\(\Leftrightarrow a^2+b^2+2-2a-2b\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2\ge0\)( luôn đúng )
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}b-1=0\\b-1=0\end{cases}}\)\(\Leftrightarrow a=b=1\)
Vậy ...

\(P=\frac{n^3+2n-1}{n^3+2n^2+2n+1}\)
\(=\frac{n^3+2n-1}{\left(n^3+1\right)+\left(2n^2+2n\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2+n+1\right)}\)
Để phân thức xác định thì \(n+1\ne0\Rightarrow n\ne1\)
(vì \(n^2+n+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\))
Cảm ơn em nhé, những chia sẻ kiến thức của em rất bổ ích, sẽ có giá trị với nhiều người. Mong em sẽ có nhiều đóng góp tích cực cho olm em nhá.
Nhận ngay giải thưởng 1 coin khi góp ý cho mình tỏng các part sau nhé và có thể bổ sung thêm các tips học toán