K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

ta có:

\(\dfrac{5}{x-3}\)=5:(x-3)=(x-3)thuộc Ư(5)thuộc (+-1 +-5)

 

5 tháng 9 2020

a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)

Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)

=> \(-5⋮x-5\)

=> x - 5 \(\in\)Ư(-5)

=> \(x-5\in\left\{1;5;-1;-5\right\}\)

=> \(x\in\left\{6;11;4;0\right\}\)

Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ 

b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)

Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)

=> \(13⋮x-5\)

=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)

=> \(x\in\left\{6;18;4;-8\right\}\)

Vậy khi  \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ

c) Ta có C = \(\frac{x-3}{2x}\)

=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)

Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)

Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì  C là số hữu tỉ

12 tháng 10 2016

Ta có:

\(T=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=\frac{3.\left(x-5\right)+7}{x-5}=\frac{3.\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để T nguyên thì \(\frac{7}{x-5}\) nguyên

\(\Rightarrow x-5\inƯ\left(7\right)\)

\(\Rightarrow x-5\in\left\{1;-1;7;-7\right\}\)

\(\Rightarrow x\in\left\{6;4;12;-2\right\}\)

Vậy \(x\in\left\{6;4;12;-2\right\}\) thì T nguyên

\(a)\)

Để x là số nguyên

\(\Rightarrow\frac{2}{2a+1}\)là số nguyên

\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)

Ta có:

2a+1-2-112
a-3/2-101/2
So sánh điều điện aLoạiTMTMLoại

\(b)\)

Ta có:

\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên

\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)

\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)

\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)

\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)

\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)

15 tháng 2 2020

Mình làm mẫu 2 bài đầu tiên thôi nhé!! 😃

a, Để 3/(x - 1) dương thì 3 và x - 1 cùng dấu

Mà 3 > 0 => x - 1 > 0 => x > 1

b, Để 5/(x - 2) âm thì 5 và x - 2 trái dấu

Mà 5 > 0 => x - 2 < 0 => x < 2

*tk giúp mình nhé!! 😊*

15 tháng 2 2020

a, \(\frac{3}{x-1}\) là số dương => \(\frac{3}{x-1}>0\) => x - 1 cùng dấu với 3

 Vì x - 1 là mẫu số \(\Rightarrow x-1\ne0\) \(\Rightarrow x-1>0\Rightarrow x>0+1\Rightarrow x>1\)

b, \(\frac{5}{x-2}\) là số âm => \(\frac{5}{x-2}< 0\) => x - 2 khác dấu với 5

Vì x - 2 là mẫu số \(\Rightarrow x-2\ne0\Rightarrow x-2< 0\Rightarrow x< 0+2\Rightarrow x< 2\)

c, \(\frac{x-3}{x-5}\) là số dương => \(\frac{x-3}{x-5}>0\) => x - 3 và x - 5 cùng dấu

\(TH1:\hept{\begin{cases}x-3>0\\x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x>0+3\\x>0+5\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>5\end{cases}\Rightarrow}}x>5}\)

\(TH2:\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}\Rightarrow}x< 3}\)

d, \(\frac{x+7}{x+10}\) là số âm => \(\frac{x+7}{x+10}< 0\) => x + 7 và x + 10 khác dấu

\(TH1:\hept{\begin{cases}x+7>0\\x+10< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>0-7\\x< 0-10\end{cases}\Rightarrow}\frac{x>-7}{x< -10}\) ( loại )

\(TH2:\hept{\begin{cases}x+7< 0\\x+10>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0-7\\x>0-10\end{cases}\Rightarrow}\hept{\begin{cases}x< -7\\x>-10\end{cases}\Rightarrow}-10< x< -7}\)

8 tháng 8 2018

\(t=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=3+\frac{7}{x-5}\)

\(t\in Z\Rightarrow7⋮\left(x-5\right)\)

\(\Rightarrow x-5\in\left(1;7;-1;-7\right)\)

\(\Rightarrow x\in\left(6;12;4;-2\right)\)

17 tháng 9 2019

Theo bài ra ,ta có:

t=\(\frac{3x-8}{x-5}\) =\(\frac{3x-15+7}{x-5}\) =\(3+\frac{7}{x-5}\)

để t \(\in\)Z thì 7\(⋮\) x-5

                    \(\Rightarrow\)x-5\(\in\)Ư(7)={-1;1;-7;7}

                    \(\Rightarrow\)x\(\in\)(-2;4;6;12)

Vậy x\(\in\)(-2;4;6;12)

10 tháng 9 2023

a, \(\dfrac{x}{7}\) \(\in\) Q     ⇔ \(x\in z\)

b, \(\dfrac{5}{x}\) \(\in\) Q     ⇔ \(x\) \(\ne\) 0; \(x\) \(\in\)  Z

c, - \(\dfrac{5}{2x}\)  \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\in Z\)

 

10 tháng 9 2023

a) Tập hợp số nguyên chia hết cho 7 là

\(\Rightarrow x\in A=\left\{\pm7;\pm14;\pm21;...\right\}\)

\(\Rightarrow A=\left\{x\inℕ|x=\pm7k;k\inℤ\right\}\)

Vậy để \(\dfrac{x}{7}\in Q\)

\(\Rightarrow x\in A\)

b) \(\dfrac{5}{x}\inℚ\)

\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\)

c) \(-\dfrac{5}{2x}\inℚ\)

\(\Rightarrow2x\in\left\{\pm1;\pm5\right\}\)

\(\Rightarrow x\in\left\{\pm\dfrac{1}{2};\pm\dfrac{5}{2}\right\}\)

\(\Rightarrow x\in\varnothing\)

21 tháng 6 2019

Bài 1:

a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)

Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)

b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)

Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Vậy \(a\in\left\{-9;-5;-3;1\right\}\)

Bài 2:

a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)

Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-2;4;6;12\right\}\)

b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)

Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Vậy \(x\in\left\{-4;2;4;10\right\}\)

c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)

Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)

Vậy \(x\in\left\{-14;-4;-2;8\right\}\)

Bài 3:

Gọi \(d\inƯC\left(2m+9;14m+62\right)\)

\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)

\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)

Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản