Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)
Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)
=> \(-5⋮x-5\)
=> x - 5 \(\in\)Ư(-5)
=> \(x-5\in\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{6;11;4;0\right\}\)
Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ
b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)
Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)
=> \(13⋮x-5\)
=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)
=> \(x\in\left\{6;18;4;-8\right\}\)
Vậy khi \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ
c) Ta có C = \(\frac{x-3}{2x}\)
=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)
Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)
Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì C là số hữu tỉ
Ta có:
\(T=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=\frac{3.\left(x-5\right)+7}{x-5}=\frac{3.\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để T nguyên thì \(\frac{7}{x-5}\) nguyên
\(\Rightarrow x-5\inƯ\left(7\right)\)
\(\Rightarrow x-5\in\left\{1;-1;7;-7\right\}\)
\(\Rightarrow x\in\left\{6;4;12;-2\right\}\)
Vậy \(x\in\left\{6;4;12;-2\right\}\) thì T nguyên
\(a)\)
Để x là số nguyên
\(\Rightarrow\frac{2}{2a+1}\)là số nguyên
\(\Rightarrow2⋮2a+1\Rightarrow2a+1\inƯ\left(2\right)\Rightarrow2a+1\in\left\{\pm1;\pm2\right\}\)
Ta có:
2a+1 | -2 | -1 | 1 | 2 |
a | -3/2 | -1 | 0 | 1/2 |
So sánh điều điện a | Loại | TM | TM | Loại |
\(b)\)
Ta có:
\(\frac{6\left(x-1\right)}{3\left(x+1\right)}\) thuộc số nguyên
\(=\frac{6x-1}{3x+1}=\frac{6x+2-3}{3x+1}=\frac{6x+2}{3x+1}-\frac{3}{3x+1}=2-\frac{3}{3x+1}\)
\(\Leftrightarrow3⋮3x+1\Rightarrow3x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(3x+1=1\Leftrightarrow3x=0\Leftrightarrow x=0\left(TM\right)\)
\(3x+1=-1\Leftrightarrow3x=-2\Leftrightarrow x=\frac{-2}{3}\)(Loại)
\(3x+1=3\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)(Loại)
\(3x+1=-3\Leftrightarrow3x=-4\Leftrightarrow x=\frac{-4}{3}\)(Loại)
Mình làm mẫu 2 bài đầu tiên thôi nhé!! 😃
a, Để 3/(x - 1) dương thì 3 và x - 1 cùng dấu
Mà 3 > 0 => x - 1 > 0 => x > 1
b, Để 5/(x - 2) âm thì 5 và x - 2 trái dấu
Mà 5 > 0 => x - 2 < 0 => x < 2
*tk giúp mình nhé!! 😊*
a, \(\frac{3}{x-1}\) là số dương => \(\frac{3}{x-1}>0\) => x - 1 cùng dấu với 3
Vì x - 1 là mẫu số \(\Rightarrow x-1\ne0\) \(\Rightarrow x-1>0\Rightarrow x>0+1\Rightarrow x>1\)
b, \(\frac{5}{x-2}\) là số âm => \(\frac{5}{x-2}< 0\) => x - 2 khác dấu với 5
Vì x - 2 là mẫu số \(\Rightarrow x-2\ne0\Rightarrow x-2< 0\Rightarrow x< 0+2\Rightarrow x< 2\)
c, \(\frac{x-3}{x-5}\) là số dương => \(\frac{x-3}{x-5}>0\) => x - 3 và x - 5 cùng dấu
\(TH1:\hept{\begin{cases}x-3>0\\x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x>0+3\\x>0+5\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>5\end{cases}\Rightarrow}}x>5}\)
\(TH2:\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}\Rightarrow}x< 3}\)
d, \(\frac{x+7}{x+10}\) là số âm => \(\frac{x+7}{x+10}< 0\) => x + 7 và x + 10 khác dấu
\(TH1:\hept{\begin{cases}x+7>0\\x+10< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>0-7\\x< 0-10\end{cases}\Rightarrow}\frac{x>-7}{x< -10}\) ( loại )
\(TH2:\hept{\begin{cases}x+7< 0\\x+10>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0-7\\x>0-10\end{cases}\Rightarrow}\hept{\begin{cases}x< -7\\x>-10\end{cases}\Rightarrow}-10< x< -7}\)
\(t=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=3+\frac{7}{x-5}\)
\(t\in Z\Rightarrow7⋮\left(x-5\right)\)
\(\Rightarrow x-5\in\left(1;7;-1;-7\right)\)
\(\Rightarrow x\in\left(6;12;4;-2\right)\)
Theo bài ra ,ta có:
t=\(\frac{3x-8}{x-5}\) =\(\frac{3x-15+7}{x-5}\) =\(3+\frac{7}{x-5}\)
để t \(\in\)Z thì 7\(⋮\) x-5
\(\Rightarrow\)x-5\(\in\)Ư(7)={-1;1;-7;7}
\(\Rightarrow\)x\(\in\)(-2;4;6;12)
Vậy x\(\in\)(-2;4;6;12)
a, \(\dfrac{x}{7}\) \(\in\) Q ⇔ \(x\in z\)
b, \(\dfrac{5}{x}\) \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\) \(\in\) Z
c, - \(\dfrac{5}{2x}\) \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\in Z\)
a) Tập hợp số nguyên chia hết cho 7 là
\(\Rightarrow x\in A=\left\{\pm7;\pm14;\pm21;...\right\}\)
\(\Rightarrow A=\left\{x\inℕ|x=\pm7k;k\inℤ\right\}\)
Vậy để \(\dfrac{x}{7}\in Q\)
\(\Rightarrow x\in A\)
b) \(\dfrac{5}{x}\inℚ\)
\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\)
c) \(-\dfrac{5}{2x}\inℚ\)
\(\Rightarrow2x\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{\pm\dfrac{1}{2};\pm\dfrac{5}{2}\right\}\)
\(\Rightarrow x\in\varnothing\)
Bài 1:
a) \(x=\frac{a+1}{a+9}=\frac{a+9-8}{a+9}=\frac{a+9}{a+9}-\frac{8}{a+9}=1-\frac{8}{a+9}\)
Để \(x\in Z\)thì \(a+9\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
Vậy \(a\in\left\{-17;-13;-11;-10;-8;-7;-5;-1\right\}\)
b) \(x=\frac{a-1}{a+4}=\frac{a+4-5}{a+4}=\frac{a+4}{a+4}-\frac{5}{a+4}=1-\frac{5}{a+4}\)
Để \(x\in Z\)thì \(a+4\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Vậy \(a\in\left\{-9;-5;-3;1\right\}\)
Bài 2:
a) \(t=\frac{3x-8}{x-5}=\frac{3x-15}{x-5}+\frac{7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}=3+\frac{7}{x-5}\)
Để \(t\in Z\)thì \(x-5\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-2;4;6;12\right\}\)
b)\(q=\frac{2x+1}{x-3}=\frac{2x-6}{x-3}+\frac{7}{x-3}=\frac{2\left(x-3\right)}{x-3}+\frac{7}{\left(x-3\right)}=2+\frac{7}{x-3}\)
Để \(q\in Z\)thì \(x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Vậy \(x\in\left\{-4;2;4;10\right\}\)
c)\(p=\frac{3x-2}{x+3}=\frac{3x+9}{x+3}-\frac{11}{x+3}=\frac{3\left(x+3\right)}{x+3}-\frac{11}{x+3}=3-\frac{11}{x+3}\)
Để \(p\in Z\)thì \(x+3\inƯ\left(11\right)=\left\{-11;-1;1;11\right\}\)
Vậy \(x\in\left\{-14;-4;-2;8\right\}\)
Bài 3:
Gọi \(d\inƯC\left(2m+9;14m+62\right)\)
\(\Rightarrow\hept{\begin{cases}\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}7\left(2m+9\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(14m+63\right)⋮d\\\left(14m+62\right)⋮d\end{cases}}\)
\(\Rightarrow\left[\left(14m+63\right)-\left(14m+62\right)\right]⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯC\left(2m+9;14m+62\right)=1\)
Vậy \(x=\frac{2m+9}{14m+62}\)là p/s tối giản
ta có:
\(\dfrac{5}{x-3}\)=5:(x-3)=(x-3)thuộc Ư(5)thuộc (+-1 +-5)