\(\frac{n^2-n+6}{n-2}\)là số chính phương .

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

A=.................

de A la so chinh phuong thi (n-2)^2 =n^2-n+6 

ta co (n-2)^2 =...=n^2 -4n=...=4n-4 

  • 4n-4 chia het n+6 
  • roi tim n 
  • cau ko hieu thi bao to nho
17 tháng 8 2015

Em Xét 2 trường hợp: n = 2k và n = 2k + 1

DD
17 tháng 1 2021

a) \(n^2+8n+29=n^2+4n+4n+16+15=\left(n+4\right)^2+15=m^2\)

\(\Leftrightarrow m^2-\left(n+4\right)^2=15\Leftrightarrow\left(m-n-4\right)\left(m+n+4\right)=13=1.13\)

Do \(m-n-4< m+n+4\)nên ta có trường hợp: 

 \(\hept{\begin{cases}m-n-4=1\\m+n+4=13\end{cases}}\Leftrightarrow\hept{\begin{cases}m=7\\n=2\end{cases}}\)(thỏa) 

b) \(9n^2+6n+22=3\left(3n^2+n\right)+3n+1+21=\left(3n+1\right)^2+21=m^2\)

\(\Leftrightarrow m^2-\left(3n+1\right)^2=21\Leftrightarrow\left(m-3n-1\right)\left(m+3n+1\right)=21=1.21=3.7\)

Ta có các trường hợp: 

\(\hept{\begin{cases}m-3n-1=1\\m+3n+1=21\end{cases}}\Leftrightarrow\hept{\begin{cases}m=11\\n=3\end{cases}}\)(thỏa) 

\(\hept{\begin{cases}m-3n-1=3\\m+3n+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}m=5\\n=\frac{1}{3}\end{cases}}\)(loại)

26 tháng 1 2018

2) Ta có: \(S=\frac{3x-8}{x-5}=\frac{3x-15+7}{x-5}=\frac{3\left(x-5\right)+7}{x-5}=\frac{3\left(x-5\right)}{x-5}+\frac{7}{x-5}\) \(=3+\frac{7}{x-5}\)

Để S là số nguyên \(\Leftrightarrow\frac{7}{x-5}\in Z\)

\(\Leftrightarrow x-5\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Nếu x - 5 = 1 thì x = 6

Nếu x - 5 = -1 thì x = 4

Nếu x - 5 = 7 thì x = 12

Nếu x - 5 = -7 thì x = -2

Vậy \(x=\left\{-2;4;6;12\right\}\)

10 tháng 8 2019

Ta có: Q = \(\frac{n^2-1}{2n-1}\)

=> 4Q = \(\frac{4n^2-4}{2n-1}=\frac{2n\left(n-1\right)+\left(2n-1\right)-3}{2n-1}=2n+1-\frac{3}{2n-1}\)

Để Q \(\in\)Z <=> 4Q \(\in\)Z <=> 3 \(⋮\)2n - 1

<=> 2n - 1 \(\in\)Ư(3) = {1; -1; 3; -3}

<=> n \(\in\){1; 0; 2; -1}