\(\dfrac{3}{x}\)=\(\dfrac{13}{x}\)

(với x≠0)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2023

\(2\dfrac{3}{x}\) là hỗn số hay là \(2\times\dfrac{3}{x}\) vậy bạn .

15 tháng 8 2023

5

 

13 tháng 10 2018

P = \(\dfrac{-7}{78}x\)

=> Để P > 0 thì x < 0

Để P = 0 thì x = 0

Để P < 0 thì x > 0

13 tháng 10 2018

Thanks

26 tháng 6 2017

a/ \(\left(x+1\right)\left(x-2\right)< 0\)

TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)

TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)

Vậy.........

b/ \(\left(x-3\right)\left(x-4\right)>0\)

TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)

TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)

Vậy...............

c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)

\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)

Vậy...............

26 tháng 6 2017

Để ( x + 1 ) ( x - 2 ) < 0

=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2

=> x + 1 dương x + 2 âm

Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2

28 tháng 8 2017

mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha

a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)

b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)

\(\Leftrightarrow x>-2\) vậy \(x>-2\)

c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)

d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)

e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)

f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)

vậy \(x>6\) hoặc \(x< 2\)

g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)

th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)

th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)

\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)

vậy \(x>3\) hoặc \(-2< x< 1\)

h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)

i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)

vậy \(-2< x< 1\)

27 tháng 8 2017

Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!

18 tháng 10 2018

1.

(x + 7)(x - 2) > 0

TH1: \(\left\{{}\begin{matrix}x+7>0\\x-2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>-7\\x>2\end{matrix}\right.\) \(\Rightarrow x>2\)

TH2: \(\left\{{}\begin{matrix}x+7< 0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -7\\x< 2\end{matrix}\right.\) \(\Rightarrow x< -7\)

2.

\(\dfrac{37-x}{x+13}=\dfrac{3}{7}\) \(\Rightarrow7\left(37-x\right)=3\left(x+13\right)\)

\(\Leftrightarrow259-7x=3x+39\)

\(\Leftrightarrow259-39=3x+7x\)

\(\Leftrightarrow220=10x\Rightarrow x=22\)

3.

\(\dfrac{x-3}{x+8}< 0\)

TH1: \(\left\{{}\begin{matrix}x-3< 0\\x+8>0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x< 3\\x>-8\end{matrix}\right.\) => -8 < x < 3

TH2: \(\left\{{}\begin{matrix}x-3>0\\x+8< 0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x>3\\x< -8\end{matrix}\right.\) (loại)

Vậy -8 < x < 3

18 tháng 10 2018

1 x∈N

27 tháng 6 2017

a, \(\dfrac{3}{4}+x=\dfrac{8}{13}\)

\(x=\dfrac{8}{13}-\dfrac{3}{4}\)

\(x=-\dfrac{7}{52}\)

b,\(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{11}{12}-\dfrac{2}{3}\)

\(\dfrac{2}{5}+x=\dfrac{1}{4}\)

\(x=\dfrac{1}{4}-\dfrac{2}{5}\)

\(x=-\dfrac{3}{20}\)

c, \(2x\left(x-\dfrac{1}{7}\right)=0\)

\(2x-\dfrac{1}{7}=0\)

\(x-\dfrac{1}{7}=0:2\)

\(x-\dfrac{1}{7}=0\)

\(x=0-\dfrac{1}{7}\)

\(x=\dfrac{1}{7}\)

d, \(\dfrac{3}{4}+\dfrac{1}{4}\div x=\dfrac{2}{5}\)

\(\left(\dfrac{3}{4}+\dfrac{1}{4}\right):x=\dfrac{2}{5}\)

\(1:x=\dfrac{2}{5}\)

\(x=1:\dfrac{2}{5}\)

\(x=\dfrac{5}{2}\)

27 tháng 6 2017

a) \(\dfrac{3}{4}+x=\dfrac{8}{13}\)\(\Leftrightarrow\) \(x=\dfrac{8}{13}-\dfrac{3}{4}=\dfrac{-7}{52}\) vậy \(x=\dfrac{-7}{52}\)

b) \(\dfrac{11}{12}-\left(\dfrac{2}{5}+x\right)=\dfrac{2}{3}\) \(\Leftrightarrow\) \(\dfrac{11}{12}-\dfrac{2}{5}-x=\dfrac{2}{3}\) \(\Leftrightarrow\) \(x=\dfrac{11}{12}-\dfrac{2}{5}-\dfrac{2}{3}=\dfrac{-3}{20}\) vậy \(x=\dfrac{-3}{20}\)

c) \(2x\left(x-\dfrac{1}{7}\right)=0\) \(\Leftrightarrow\) \(2x^2-\dfrac{2}{7}x=0\)

\(\Delta\) = \(\left(\dfrac{-2}{7}\right)^2-4.2.0=\dfrac{4}{49}>0\)

\(\Rightarrow\) phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{\dfrac{2}{7}+\sqrt{\dfrac{4}{49}}}{4}=\dfrac{1}{7}\)

\(x_2=\dfrac{\dfrac{2}{7}-\sqrt{\dfrac{4}{49}}}{4}=0\)

vậy \(x=0;x=\dfrac{1}{7}\)

a: 2x(x-1/7)=0

=>x(x-1/7)=0

=>x=0 hoặc x=1/7

b: \(\dfrac{3}{4}+\dfrac{1}{4}:x=\dfrac{2}{5}\)

\(\Leftrightarrow\dfrac{1}{4}:x=\dfrac{2}{5}-\dfrac{3}{4}=\dfrac{8}{20}-\dfrac{15}{20}=\dfrac{-7}{20}\)

nên \(x=\dfrac{-1}{4}:\dfrac{7}{20}=\dfrac{-20}{4\cdot7}=\dfrac{-5}{7}\)

c: \(\Leftrightarrow\dfrac{41}{9}:\dfrac{41}{18}-7< x< \left(3.2:3.2+\dfrac{45}{10}\cdot\dfrac{31}{45}\right):\left(-21.5\right)\)

\(\Leftrightarrow2-7< x< \dfrac{\left(1+3.1\right)}{-21.5}\)

\(\Leftrightarrow-5< x< \dfrac{-41}{215}\)

mà x là số nguyên

nên \(x\in\left\{-4;-3;-2;-1\right\}\)

16 tháng 11 2018

1)

a.\(\dfrac{1}{5}+x=\dfrac{13}{50}\)

\(\Leftrightarrow x=\dfrac{13}{50}-\dfrac{1}{5}=\dfrac{13-10}{50}=\dfrac{3}{50}\)

b.\(\dfrac{1}{6}-x=\dfrac{5}{12}\)

\(\Leftrightarrow x=\dfrac{1}{6}-\dfrac{5}{12}=\dfrac{2-5}{12}=-\dfrac{3}{12}=-\dfrac{1}{4}\)

c.\(x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{16}\)

\(\Leftrightarrow x\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{4}.\left(-\dfrac{1}{2}\right)^2\)

\(\Leftrightarrow x=\dfrac{1}{4}\)

d.\(x:\dfrac{7}{11}=\dfrac{9}{33}\)

\(\Leftrightarrow x=\dfrac{9}{33}.\dfrac{7}{11}=\dfrac{3}{11}.\dfrac{7}{11}=\dfrac{21}{121}\)

e.\(\dfrac{3}{5}.x=-\dfrac{21}{10}\)

\(\Leftrightarrow x=-\dfrac{21}{10}:\dfrac{3}{5}=-\dfrac{21}{10}.\dfrac{5}{3}=-\dfrac{7}{2}\)

6 tháng 9 2017

a) \(\left(x-\dfrac{3}{5}\right)\left(x+\dfrac{3}{8}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{5}>0\\x+\dfrac{3}{8}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{5}< 0\\x+\dfrac{3}{8}< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{5}\\x>-\dfrac{3}{8}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{5}\\x< -\dfrac{3}{8}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3}{5}\\x< -\dfrac{3}{8}\end{matrix}\right.\)

Vậy ...

6 tháng 9 2017

b) \(\left(2x+\dfrac{3}{2}\right):\left(2x-\dfrac{2}{3}\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+\dfrac{3}{2}>0\\2x-\dfrac{2}{3}< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+\dfrac{3}{2}< 0\\2x-\dfrac{2}{3}>0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x>-\dfrac{3}{2}\\2x< \dfrac{2}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}2x< -\dfrac{3}{2}\\2x>\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{3}{2}< 2x< \dfrac{2}{3}\\\dfrac{2}{3}< 2x< -\dfrac{3}{2}\text{(vô lí)}\end{matrix}\right.\)

\(\Rightarrow-\dfrac{3}{4}< x< \dfrac{1}{3}\)

Vậy ...

a: \(\left|x\right|=3+\dfrac{1}{5}=\dfrac{16}{5}\)

mà x<0

nên x=-16/5

b: \(\left|x\right|=-2.1\)

nên \(x\in\varnothing\)

c: \(\left|x-3.5\right|=5\)

=>x-3,5=5 hoặc x-3,5=-5

=>x=8,5 hoặc x=-1,5

d: \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)

=>|x+3/4|=1/2

=>x+3/4=1/2 hoặc x+3/4=-1/2

=>x=-1/4 hoặc x=-5/4