Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 7\(x\).(\(x\) - 10) = 0
\(\left[{}\begin{matrix}7x=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\)
Vậy \(x\in\) {0; 10}
b, 17.(3\(x\) - 6).(2\(x\) - 18) = 0
\(\left[{}\begin{matrix}3x-6=0\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}3x=6\\2x-18=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=6:3\\x=18:2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\)
a,x.(x+7)=0
suy ra x=o hoặc x+7=0
vs x+7=0
x=0+7
x=7
vậy x=0 hoặc x=7
b(2+2x)(7-x)=0
suy ra 2+2x=0 hoặc 7-x=0
vs2+2x=0 vs7-x=0
2x =0-2 x=0+7
2x =(-2) x=7
x=(-2);2
x=-1
vậy x=-1 hoặc x=7
d(x^2-9)(3x+15)=0
suy ra x^2-9=0 hoặc 3x+15=0
vsx^2-9=0 vs 3x+15=0
x^2 =0+9 3x =0-15
x^2 =9 3x =-15
x^2 =3^2 x=(-15):3
suy ra x=3 hoặc x=-3 x=-5
vậy x=3 x=-3 hoặc x=-5
e,(4x-8)(x^2+1)=0
suy ra4x-8=0 hoặc x^2+1=0
vs 4x-8=0 vs x^2+1=0
4x =0+8 x^2 =0-1
4x =8 x^2 =-1
x =8:4 x^2 =-1^2 hoặc 1^2
x =2 suy ra x=-1 hoặc x=1
vậy x=2, x=-1 hoặc x=1
\(\left(x-3\right)\left(x-12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)
\(\Rightarrow x\in\left\{3;12\right\}\)
\(\left(x^2-81\right)\left(x^2+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)
\(\Rightarrow x=9\)
\(\left(x-4\right)\left(x+2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu
\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)
\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)
Vậy \(x\in\left\{-1;0;1;2;3\right\}\)
d) |2x – 5| –7 = 22
| 2x -5 | = 22+7
| 2x -5 | = 29
TH1: 2x-5 = -29
2x = -29+5
2x= -24
x= -24:2
x= -12
TH2: 2x -5 =29
2x = 29+5
2x= 34
x= 34:2
x= 17
Vậy...
a, - 2 .( x + 6 ) + 6 . ( x - 10 ) = 8
- 2x - 12 + 6x - 60 = 8
4x - 72 = 8
4x = 8 + 72
4x = 80
x = 20
b, - 4 . ( 2x + 9 ) - ( - 8x + 3 ) - ( x + 13 ) = 0
- 8x - 36 + 8x - 3 - x - 13 = 0
- x - 52 = 0
x = - 52
c, 7x . ( 2 + x ) - 7x . ( x + 3 ) = 14
7x . ( 2 + x - x - 3 ) = 14
7x . ( - 1 ) = 14
7x = 14 : ( - 1 )
7x = - 14
x = - 2
d, 2 . ( 5 + 3x ) + x = 31
10 + 6x + x = 31
10 + 7x = 31
7x = 31 - 10
7x = 21
x = 3
a)-2(x+6)+6(x-10)=8
-2x+-12+6x+-60=8
4x+-72=8
4x=80
x=80:4
x=20
b)-4(2x+9)-(-8x+3)-(x+13)=0
-8x+-36+8x-3+x-13=0
(-8x+8x)+-36+-3+x-13=0
0+-52+x=0
x=0-(-52)
x=-52
c)7x(2+x)-7x(x+3)=14
14x+7x2
a) (x-2).(3x-9)=0
\(\Rightarrow\orbr{\begin{cases}x-2=0\\3x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\3x=9\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Vậy x=2 hoặc x=3
Phần b,c tương tự
Ta có : (3 - x)(x + 5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3-x=0\\x+5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
a, \(\left(x-1\right).\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b, \(\left(2x-4\right).\left(3x+9\right)=0\\ \Rightarrow\left[{}\begin{matrix}2x-4=0\\3x+9=0\end{matrix}\right.\left[{}\begin{matrix}2x=4\\3x=-9\end{matrix}\right.\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
a) TH1: x-1=0 => x=1
TH2: x+2=0 => x=-2
b) TH1: 2x-4=0 <=> 2x= 4 <=> x=2
TH2: 3x+9=0 <=> 3x=-9 <=> x= -3