\(\dfrac{A}{xmu3-8}=\dfrac{x-1}{xmu2+2x+4}với...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

Phân thức đại số

2 tháng 12 2017

Hỏi đáp Toán

18 tháng 5 2017

a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)

\(\Leftrightarrow\left(x^2-4\right)\left(x+2\right)P=\left(x-2\right)\left(x-1\right)Q\)

\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x-2\right)P=\left(x-2\right)\left(x-1\right)Q\)

\(\Leftrightarrow\)\(\left(x+2\right)^2P=\left(x-1\right)Q\)

\(\Leftrightarrow P=x-1\)

\(Q=\left(x+2\right)^2=x^2+4x+4\)

b)\(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)P=\left(x+1\right)\left(x-1\right)\left(x-2\right)Q\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)P=\left(x+1\right)\left(x-2\right)Q\)

\(\Leftrightarrow P=\left(x+1\right)\left(x-2\right)=x^2-x-2\)

\(Q=\left(x-1\right)\left(x+2\right)=x^2+x-2\)

28 tháng 6 2017

Tính chất cơ bản của phân thức

Tính chất cơ bản của phân thức

29 tháng 10 2017

Tính chất cơ bản của phân thức

10 tháng 8 2023

\(\dfrac{x^2-3x}{2x^2-3x-9}=\dfrac{x^2+3x}{A}\)

\(\Rightarrow A=\dfrac{\left(x^2+3x\right)\left(2x^2-3x-9\right)}{x^2-3x}\)

\(\Rightarrow A=\dfrac{x\left(x+3\right)\left(2x^2-3x-9\right)}{x\left(x-3\right)}\)

\(\Rightarrow A=\dfrac{\left(x+3\right)\left(2x^2-3x-9\right)}{\left(x-3\right)}\)

mà \(x=-\dfrac{3}{2}\)

\(\Rightarrow A=\dfrac{\left(-\dfrac{3}{2}+3\right)\left(2\left(-\dfrac{3}{2}\right)^2-3\left(-\dfrac{3}{2}\right)-9\right)}{\left(-\dfrac{3}{2}-3\right)}\)

\(\Rightarrow A=\dfrac{\dfrac{3}{2}\left(2.\dfrac{9}{4}+\dfrac{9}{2}-9\right)}{-\dfrac{9}{2}}\)

\(\Rightarrow A=\dfrac{\dfrac{3}{2}\left(\dfrac{9}{2}+\dfrac{9}{2}-9\right)}{-\dfrac{9}{2}}\)

\(\Rightarrow A=\dfrac{\dfrac{3}{2}\left(\dfrac{9}{2}+\dfrac{9}{2}-9\right)}{-\dfrac{9}{2}}=0\)

10 tháng 8 2023

A = 0

15 tháng 11 2018

\(a.\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{-2\left(y-x\right)}{3\left(y-x\right)}=\dfrac{-2}{3}\)

\(b.\dfrac{x-2}{-x}=\dfrac{2-x}{x}=\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{8-x^3}{x\left(x^2+2x+4\right)}\)

\(\dfrac{3x}{x+y}=\dfrac{3x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{-3x\left(x-y\right)}{\left(x+y\right)\left(y-x\right)}=\dfrac{-3x\left(x-y\right)}{y^2-x^2}\)

20 tháng 11 2022

c: \(\dfrac{-3x\left(x-y\right)}{y^2-x^2}=\dfrac{3x\left(x-y\right)}{\left(x+y\right)\left(x-y\right)}=\dfrac{3x}{x+y}\)

a: \(\dfrac{2\left(x-y\right)}{3y-3x}=\dfrac{2\left(x-y\right)}{-3\left(x-y\right)}=\dfrac{-2}{3}\)

b: \(\dfrac{8-x^3}{x\left(x^2+2x+4\right)}=\dfrac{\left(2-x\right)\left(x^2+2x+4\right)}{x\left(x^2+2x+4\right)}=\dfrac{2-x}{x}\)

15 tháng 11 2018

a)2(x-y)/(-3)(x-y)=-2/3

b)8-x^3=(2-x)(x^2+2x+4)  => Vế phải =(2-x)/x=(x-2)/-x

c)y^2-x^2=(y+x)(y-x)    bạn đổi dấu rồi rút gọn là được,cũng tương tự như trên ý

5 tháng 11 2017

Bài 3: (SBT/24):

a. \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)

(5x+3) . (x2-4) = 5x3-20x+3x3-12

(x-2) . (5x2+13x+6) = 5x3+13x2+6x-10x2-26x-12 = 5x3-20x+3x2-12

=> (5x+3) (x2-4) = (x-2) (5x2+13x+6)

Vậy \(\dfrac{5x+3}{x-2}\)=\(\dfrac{5x^2+13x+6}{x^2-4}\)(đẳng thức đúng)

b. \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^2+6x+9}\)

(x+1) . (x2+6x+9) = x3+6x2+9x+x2+6x+9 = x3+7x2+15x+9

(x+3) . (x2+3) = x3+3x+3x2+9

=> (x+1) (x2+6x+9) ≠ (x+3) (x2+3)

Vậy \(\dfrac{x+1}{x+3}\)\(\dfrac{x^2+3}{x^2+6x+9}\)(đẳng thức sai)

Chữa lại: \(\dfrac{x+1}{x+3}\)=\(\dfrac{x^2+3}{x^{2_{ }}+6x+9}\)

c. \(\dfrac{x^2-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)

(x2-2) . (x+1) = x3+x2-2x-2

(x2-1) . (x+2) = x3+2x2-x-2

=> (x2-2) (x+1) ≠ (x2-1) (x+2)

Vậy \(\dfrac{x^2-2}{x^2-1}\)\(\dfrac{x+2}{x+1}\)(đẳng thức sai)

Chữa lại: \(\dfrac{x^2+x-2}{x^2-1}\)=\(\dfrac{x+2}{x+1}\)

d. \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)

(2x2-5x+3) . (x2+5x+4) = 2x4+10x3+8x2-5x3-25x2-20x+3x2+15x+12

= 2x4+5x3-14x2-5x+12

(x2+3x-4) . (2x2-x-3) = 2x4-x3-3x2+6x3-3x2-9x-8x2+4x+12

= 2x4+5x3-14x2-5x+12

=> (2x2-5x+3) (x2+5x+4) = (x2+3x-4) (2x2-x-3)

Vậy \(\dfrac{2x^2-5x+3}{x^2+3x-4}\)=\(\dfrac{2x^2-x-3}{x^2+5x+4}\)

a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)

b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)