Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi
1:
a: =>(x-1)(x-7)=0
=>x=1 hoặc x=7
b: =>x(x^2-9x+8)=0
=>x(x-1)(x-8)=0
=>\(x\in\left\{0;1;8\right\}\)
c: Đặt 1/căn x-7=a; 1/căn y+6=b
Theo đề, ta có:
7a-4b=5/3 và 5a+3b=13/6
=>a=1/3 và b=1/6
=>x-7=9 và y+6=36
=>x=16 và y=30
Bài 3:
a: Δ=(2m+3)^2-4(m^2+3m+2)
=4m^2+12m+9-4m^2-12m-8=1>0
=>PT luôn có hai nghiệm pb
b: x1^2+x2^2=1
=>(x1+x2)^2-2x1x2=1
=>(2m+3)^2-2(m^2+3m+2)=1
=>4m^2+12m+9-2m^2-6m-4-1=0
=>2m^2+6m+4=0
=>m=-1 hoặc m=-2
Bài 1:
c) \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{8-2\sqrt{7}} + \sqrt{2} \)
⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{(\sqrt{7})^2 - 2\sqrt{7}+1} + \sqrt{2} \)
⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{(\sqrt{7}-1)^2} + \sqrt{2} \)do
⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - |\sqrt{7}-1| + \sqrt{2} \)
⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - \sqrt{7}+1 + \sqrt{2} \) (do \(\sqrt{7} > 1 \))
⇔ \(C=\dfrac{5}{\sqrt{7}+\sqrt{2}} - (\sqrt{7} - \sqrt{2}) +1 \)
⇔ \(C=\dfrac{5-(\sqrt{7} - \sqrt{2})(\sqrt{7}+\sqrt{2})}{\sqrt{7}+\sqrt{2}} +1 \)
⇔ \(C=\dfrac{5-7+2}{\sqrt{7}+\sqrt{2}} +1 =\dfrac{0}{\sqrt{7}+\sqrt{2}} +1 \)
⇔ \(C = 0 + 1 = 1\)
Vậy \(C=1\)
Bài 3:
c) Ta có: \(M=\dfrac{Q}{P} \)
⇔ \(M=\dfrac{\dfrac{\sqrt{x}}{\sqrt{x}-2}}{\dfrac{\sqrt{x}+5}{\sqrt{x}-2} } \)
⇔ \(M=\dfrac{\sqrt{x}}{\sqrt{x}+5} \)
Mà: \(M<\dfrac{1}{2} \) ⇔ \(\dfrac{\sqrt{x}}{\sqrt{x}+5} <\dfrac{1}{2} \)
⇒ \(2\sqrt{x} < \sqrt{x}+5 \) (nhân 2 vế với \(2.(\sqrt{x} +5) >0\))
⇔ \(\sqrt{x}<5 \) ⇔ \(x<25\)
Kết hợp điều kiện ban đầu, ta đc:
Vậy khi \(0≤x<25\) và \(x≠4\) thì \(M=\dfrac{Q}{P} < \dfrac{1}{2} \)
Bài 1:
a: \(A=\sqrt{18}-2\sqrt{50}+3\sqrt{8}\)
\(=3\sqrt{2}-10\sqrt{2}+6\sqrt{2}\)
\(=-\sqrt{2}\)
Nhanh trí hỏi thằng học giỏi