K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2023

\(x_1=a>2;x_{n+1}=x_n^2-2,\forall n=1,2,...\)

mà \(n\rightarrow+\infty\)

\(\Rightarrow a\rightarrow+\infty\Rightarrow x_n\rightarrow+\infty\)

\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\dfrac{1}{x_n}=0\) \(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_nx_{n+1}}\right)=0\)

\(\)\(\Rightarrow\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{x_1}+\dfrac{1}{x_1x_2}+\dfrac{1}{x_1x_2x_3}+...+\dfrac{1}{x_1x_2...x_n}\right)=0\)

31 tháng 7 2023

...

 

 

 

1 tháng 8 2023

1e+84937

4 tháng 8 2023

Ta có xn luôn dương

Ta có \(2x_n+1=\) \(2\times\dfrac{\left(2+cos\alpha\right)x_n+cos^2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}+1=\)

\(=\dfrac{6x_n+2cos^2\alpha+2-cos2\alpha}{\left(2-2cos2\alpha\right)x_n+2-cos2\alpha}\)

\(=\dfrac{6x_n+2cos^2\alpha+2sin^2a+1}{\left(2x_n+1\right)\left(1-cos2\alpha\right)+1}\)

\(=\dfrac{3\left(2x_n+1\right)}{2\sin^2\alpha\left(2x_n+1\right)+1}\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}=\dfrac{2\sin^2\alpha\left(2x_n+1\right)+1}{3\left(2x_n+1\right)}\)

\(=\dfrac{1}{3}\left(2\sin^2\alpha+\dfrac{1}{2x_n+1}\right)\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\dfrac{1}{3}\left(\dfrac{1}{2x_n+1}-\sin^2\alpha\right)\)

\(\Rightarrow\dfrac{1}{2x_{n+1}+1}-\sin^2\alpha=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{2x_1+1}-\sin^2\alpha\right)\)

\(=\left(\dfrac{1}{3}\right)^n\left(\dfrac{1}{3}-\sin^2\alpha\right)\)

\(\Rightarrow y_n=\sum\limits^{n-1}_{i=0}\left(\dfrac{1}{3}\right)^i\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)

\(=\dfrac{1-\left(\dfrac{1}{3}\right)^n}{1-\dfrac{1}{3}}\left(\dfrac{1}{3}-\sin^2\alpha\right)+n\sin^2\alpha\)

AH
Akai Haruma
Giáo viên
27 tháng 3 2021

Yêu cầu đề bài là gì vậy bạn?

NV
6 tháng 3 2022

\(x_{n+1}=\dfrac{1}{2}x_n+2^{n-2}\Leftrightarrow x_{n+1}-\dfrac{1}{6}.2^{n+1}=\dfrac{1}{2}\left(x_n-\dfrac{1}{6}.2^n\right)\)

Đặt \(x_n-\dfrac{1}{6}.2^n=y_n\Rightarrow\left\{{}\begin{matrix}y_1=x_1-\dfrac{1}{6}.2^1=\dfrac{8}{3}\\y_{n+1}=\dfrac{1}{2}y_n\end{matrix}\right.\)

\(\Rightarrow y_n\) là CSN với công bội \(q=\dfrac{1}{2}\)

\(\Rightarrow y_n=\dfrac{8}{3}.\left(\dfrac{1}{2}\right)^{n-1}=\dfrac{4}{3.2^n}\)

\(\Rightarrow x_n=y_n+\dfrac{1}{6}.2^n=\dfrac{4}{3.2^n}+\dfrac{2^n}{6}\)