Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thực hiện chứng minh đẳng thức trên đúng bằng quy nạp
Với $n=2$: \((a+b)^=a^2+2ab+b^2=C^0_2a^2b^0+C^1_2ab+C^2_2a^0b^2\) (đúng)
................
Giả sử đẳng thức đúng đến $n=t$ $(t\in\mathbb{Z}>2$), tức là \((a+b)^t=\sum ^t_{k=0}C^k_ta^{t-k}b^k\)
Ta cần chứng minh nó cũng đúng với $n=t+1$. Thật vậy:
\((a+b)^{t+1}=(a+b)^t(a+b)=(a+b)\sum ^{t}_{k=0}a^{t-k}b^k\)
\(=C^0_ta^{t+1}+(C^1_t+C^0_t)a^tb+(C^2_t+C^1_t)a^{t-1}b^2+....+(C^t_t+C^{t-1}_t)ab^t+C^t_tb^{t+1}\)
\(=C^0_{t+1}a^{t+1}+C^1_{t+1}a^tb+C^2_{t+1}a^{t-1}b^2+....+C^t_{t+1}ab^t+C^{t+1}_{t+1}b^{t+1}\) (sử dụng đẳng thức \(C^k_n+C^{k+1}_n=C^{k+1}_{n+1}\) và \(C^0_t=C^0_{t+1}=1; C^t_t=C^{t+1}_{t+1}=1\))
\(=\sum ^{t+1}_{k=0}C^{k}_{t+1}a^{t+1-k}b^k\)
Phép chứng minh hoàn tất. Ta có đpcm.
a) Xét f(u) = \(\dfrac{u^p}{p}+\dfrac{v^q}{q}-uv,u\ge0\)
( Xem v > 0 vì v = 0 : BĐT luôn đúng )
f '(u) = up-1 - v = 0 \(\Leftrightarrow\) up-1 = v \(\Leftrightarrow\) u = \(v^{\dfrac{q}{p}}\)
Vẽ bảng biến thiên ( tự vẽ )
Vậy \(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\)
b)* Nếu \(\int\limits^b_a\left|f\left(x\right)\right|^pdx=0\) hay \(\int\limits^b_a\left|g\left(x\right)\right|^qdx=0\)thì \(f\equiv0\)hay \(g\equiv0\) BĐT luôn đúng
Xét \(\int\limits^b_a\left|f\left(x\right)\right|^pdx>0\) và \(\int\limits^b_a\left|g\left(x\right)\right|^qdx>0\)
Áp dụng BĐT câu (a) :
Với \(\left\{{}\begin{matrix}u=\dfrac{\left|f\left(x\right)\right|}{\left(\int\limits^b_a\left|f\left(x\right)\right|^pdx\right)^{\dfrac{1}{p}}}>0\\v=\dfrac{\left|g\left(x\right)\right|}{\left(\int\limits^b_a\left|g\left(x\right)\right|^qdx\right)^{\dfrac{1}{q}}}>0\end{matrix}\right.\)
\(uv\le\dfrac{u^p}{p}+\dfrac{v^q}{q}\left(1\right)\)
Lấy tích phân từ a \(\rightarrow\) b 2 vế BĐT (1) ta được :
\(\int\limits^b_auvdx\le\dfrac{1}{p}+\dfrac{1}{q}=1\)
Vậy : \(\int\limits^b_a\left|f\left(x\right).g\left(x\right)\right|dx\le\left(\int\limits^b_a\left|f\left(x\right)^p\right|dx\right)^{\dfrac{1}{p}}\left(\int\limits^b_a\left|g\left(x\right)^q\right|dx\right)^{\dfrac{1}{q}}\)
\(\Rightarrow\)(Đpcm )
Chắc là phần gõ công thức trực quan
\(\sum\) còn có ý nghĩa khác đó bạn.
Trong một số trường hợp khi giải toán, bạn sẽ gặp các biểu thức có dạng khá khó chịu như \(a_1+a_2+a_3+...+a_n\). Để tránh việc phải viết lặp đi lặp lại cái biểu thức dài loằng ngoằng đó thì ta sử dụng kí hiệu:
\(\sum\limits^n_{i=1}a_i=a_1+a_2+...+a_n\)
Ví dụ như bất đẳng thức Schwarz nổi tiếng:
\(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}+...+\dfrac{x_n^2}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\)
Có thể viết gọn lại là:
\(\sum\limits^n_{i=1}\dfrac{x_i^2}{a_i}\ge\dfrac{\left(\sum\limits^n_{i=1}x_i\right)^2}{\sum\limits^n_{i=1}a_i}\).
Hay ta có 1 đẳng thức thú vị sau:
\(\sqrt{1^3+2^3+...+n^3}=1+2+...+n\)
Ta có thể viết gọn đẳng thức này thành:
\(\sqrt{\sum\limits^n_{i=1}i^3}=\sum\limits^n_{i=1}i\)
Đó là 1 vài ví dụ để thể hiện lợi ích của dấu \(\sum\). Mà mình quên chưa nói với bạn là \(\sum\) đọc là sigma (xích-ma).