Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ΔABC cân tại A
mà AH là đường cao
nen H là trung điểm của BC và AH là phân giác của góc BAC
=>HB=HC
2: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
=>ΔAMN cân tại A
A B C H M N 1 2 I K
a) Xét \(\Delta AHB\)và\(\Delta AHC\)có :
\(\hept{\begin{cases}HB=HC\\AH\\AB=AC\end{cases}}\)( Bạn tự ghi lời giải thích nha)
\(\Rightarrow\Delta AHB=\Delta AHC\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{AHC}\)(2 cạnh tương ứng)
Mà \(\widehat{AHB}+\widehat{AHC}=180^o\)( 2 góc kề bù )
\(\Rightarrow\widehat{AHB}=\widehat{AHC}=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)
b) Xét \(\Delta AHM\left(\widehat{AMH}=90^o\right)\)và \(\Delta AHN\left(\widehat{ANH}=90^o\right)\)có :
\(\hept{\begin{cases}AH\\\widehat{A_1}=\widehat{A_2}\end{cases}}\)( bạn tự nêu lí do )
\(\Rightarrow\Delta AHM=\Delta AHN\)( Cạnh huyền - góc nhọn )
a) Xét △AHB và △AHC có:
AB = AC (gt)
BH = HC (gt)
AH Chung
=>△AHB = △AHC (c.c.c)
Do đó góc A1 = góc A2 (2 góc tương ứng)
Mà H là trung điểm của BC => AH vuông góc với BC
b) Xét △AHM và △AHN có:
Góc A1 = Góc A2 (cmt)
Góc M = Góc N (gt)
AH Chung
=> △AHM = △AHN (Cạnh huyền - Góc nhọn)
c) Vì △AHM = △AHN (cmt)
=> AM = AN (2 cạnh tương ứng)
Vì I là giao điểm của MH và AC, K là giao điểm của NH và AB.
=>AK = AI
Do đó: △AIK là tam giác cân (Do có 2 cạnh bằng nhau)
tự kẻ hình nghen :33333
a) Xét tam giác AHB và tam giác AHC có
AH chung
AHC=AHB(=90 độ)
AB=AC(gt)
=> tam giác AHB= tam giac AHC(ch-cgv)
b) từ tam giác AHB= tam giác AHC=> A1=A2( hai góc tương ứng )
Xét tam giác AMH và tam giác ANH có
A1=A2(cmt)
AH chung
AMH=ANH(=90 độ)
=> tam giấcMH=tam giác ANH(ch-gnh)
=> AM=AN( hai cạnh tương ứng)
=> tam giác AMN cân A
c) vì tam giác AMN cân A
=> AMN=ANM=(180-MAN)/2
vì tam giác ABC cân A
=> ABC=ACB=(180-BAC)/2
=> AMN=ABC mà AMN đồng vị với ABC=> MN//BC
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
không có biết luôn á
a) Xét ΔABH vuông tại H & ΔACH vuông tại H có:
- AB = AC (vì ΔABC cân tại A)
- AH là cạnh chung
Suy ra ΔABH = ΔACH (cạnh huyền - cạnh góc vuông)
Từ đó BH = CH (hai cạnh tương ứng)
b) Từ ΔABH = ΔACH (chứng minh trên) suy ra BM = CN (hai cạnh tương ứng)
Mà AB = AC (chứng minh trên)
Suy ra AM = AB - BM = AN = AC - CN
Trong ΔAMN có AM = AN (chứng minh trên) nên ΔAMN cân tại A
c) (Sửa đề: Chứng minh ba điểm A; H; I thẳng hàng)