Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
mik ko biết
sorry
......................
1)\(4n+3⋮n-2\)
\(\Leftrightarrow4n+3=4\left(n-2\right)+11\)
\(\Rightarrow4\left(n-2\right)⋮n-2\)\(\Rightarrow n-2⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\in\left\{\pm1;\pm11\right\}\)
\(\Rightarrow n\in\left\{3;1;13;-9\right\}\)
2)\(xy+5x+y+10=0\)
\(\Leftrightarrow x\left(y+5\right)+y+5+5=0\)
\(\Leftrightarrow x\left(y+5\right)+\left(y+5\right)=-5\)
\(\Leftrightarrow\left(x+1\right).\left(y+5\right)=-5\)
x+1 | -1 | -5 | 1 | 5 |
y+5 | 5 | 1 | -5 | -1 |
x | -2 | -6 | 0 | 4 |
y | 0 | -4 | -10 | -6 |
3)
c) Để \(\dfrac{2n+5}{n-3}\) ∈ Z thì 2n+5⋮n-3
⇒ 2n-3+8⋮n-3
⇒ 8⋮n-3 ⇒ n-3∈Ư(8)
Ư(8)={...}
⇒n=...
;-------------------------------; làm hết đeeeeeeeeeeeeeeeeeeeeeeeeeeeee
\(\frac{2n+3}{n+2}=\frac{2n+4-1}{n+2}=2-\frac{1}{n+2}\inℤ\)
mà \(n\inℤ\Rightarrow n+2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow n\in\left\{-3;-1\right\}\).
Ta có :
2n + 1 chia hết cho n - 3
=> 2 .(n - 3) + 5 chia hết cho n - 3
Mà 2 .(n - 3) chia hết cho n - 3
=> 5 chia hết cho n - 3
=> n-3 thuộc Ư(5) = { -5 ; -1 ; 1 ; 5 }
=> n thuộc { -2 ; 2 ; 4 ; 8 }
Vậy n thuộc { -2 ; 2 ; 4 ; 8 }
2n + 1 ⋮ n - 3
=> (2n-6) + 6 + 1 ⋮ n - 3
=> 2n - 2.3 + 7 ⋮ n - 3
=> 2(n-3) + 7 ⋮ n - 3
có n -3 ⋮ n - 3 => 2(n - 3) ⋮ n - 3
=> 7 ⋮ n - 3
=> n - 3 ∈ Ư(7)
n ∈ Z => n - 3 ∈ Z
=> n - 3 ∈ {-1;-7;1;7}
=> n ∈ {2;-4;4;10}
vậy_____
a: 12/3n-1 là số nguyên khi 3n-1 thuộc Ư(12)
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
mà n là số nguyên
nên n thuộc {0;1;-1}
c: 2n+5/n-3 là số nguyên
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;14;-8}
A= 2n-1/3n-4 nguyên
<=> 2n-1 chia hết cho 3n-4 => 3(2n-1) chia hết cho 3n-4 <=> 6n-3 chia hết cho 3n-4 (1)
mà : 3n-4 chia hết cho 3n-4 => 2(3n-4) chia hết cho 3n-4 <=> 6n-8 chia hết cho 3n-4 (2)
từ 1 và 2 => 6n-3 -6n + 8 chia hết cho 3n-4
<=> 5 chia hết cho 3n-4
<=> 3n-4 thuộc ước của 5 = { 1,-1,5,-5}
lập bảng:
đoạn này bạn biết làm k????
5sao nhé!!!
Lời giải:
Với $n$ nguyên, để $A$ nguyên thì $2n-1\vdots -n+3$
Hay $2n-1\vdots n-3$
$\Rightarrow 2(n-3)+5\vdots n-3$
$\Rightarrow 5\vdots n-3$
$\Rightarrow n-3\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow n\in\left\{4; 2; -2; 8\right\}$
n - 6 ⋮ n - 1 <=> ( n - 1 ) + 7 ⋮ n - 1
Vì n - 1 ⋮ n - 1 , để ( n - 1 ) + 7 ⋮ n - 1 <=> 7 ⋮ n - 1 => n - 1 ∈ Ư ( 7 ) = { + 1 ; + 7 }
Ta có bảng sau :
n - 1 | 1 | - 1 | 7 | - 7 |
n | 2 | 0 | 8 | - 6 |
Vậy n ∈ { - 6 ; 0 ; 2 ; 8 }
Các câu sau tương tự
\(\dfrac{2n-3}{n+1}=\dfrac{2\left(n+1\right)-5}{n+1}=2-\dfrac{5}{n+1}\)
Để \(\left(2n-3\right)⋮\left(n+1\right)\Rightarrow5⋮\left(n+1\right)\)
=> \(\left(n+1\right)=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-6;-2;0;4\right\}\)
n=(-6;-2;0;4)