Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b)\) Ta có :
\(7x^2-8x-15=0\)
\(\Leftrightarrow\)\(\left(7x^2+7x\right)-\left(15x+15\right)=0\)
\(\Leftrightarrow\)\(7x\left(x+1\right)-15\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left(7x-15\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}7x-15=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}7x=15\\x=-1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{15}{7}\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(g\left(x\right)=7x^2-8x-15\) là \(x=\frac{15}{7}\) hoặc \(x=-1\)
Chúc bạn học tốt ~
\(a)\) Ta có :
\(2x^2-5x+3=0\)
\(\Leftrightarrow\)\(\left(2x^2-2x\right)+\left(-3x+3\right)=0\)
\(\Leftrightarrow\)\(2x\left(x-1\right)+\left(-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(2x-3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-3=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=3\\x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{3}{2}\\x=1\end{cases}}}\)
Vậy nghiệm của đa thức \(f\left(x\right)=2x^2-5x+3\) là \(x=\frac{3}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
a )
\(x^2-x+1=0\)
( a = 1 ; b= -1 ; c = 1 )
\(\Delta=b^2-4.ac\)
\(=\left(-1\right)^2-4.1.1\)
\(=1-4\)
\(=-3< 0\)
vì \(\Delta< 0\) nên phương trình vô nghiệm
=> đa thức ko có nghiệm
b ) đặc t = x2 ( \(t\ge0\) )
ta có : \(t^2+2t+1=0\)
( a = 1 ; b= 2 ; b' = 1 ; c =1 )
\(\Delta'=b'^2-ac\)
\(=1^2-1.1\)
\(=1-1=0\)
phương trình có nghiệp kép
\(t_1=t_2=-\frac{b'}{a}=-\frac{1}{1}=-1\) ( loại )
vì \(t_1=t_2=-1< 0\)
nên phương trình vô nghiệm
Vay : đa thức ko có nghiệm
2/ Đặt \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
Ta có \(f\left(x\right)=\left(2x^2-3x+5\right)+3x^2+3x-6\)
=> \(f\left(x\right)=2x^2-3x+5+3x^2+3x-6\)
=> \(f\left(x\right)=5x^2-1\)
Khi \(f\left(x\right)=0\)
=> \(5x^2-1=0\)
=> \(5x^2=1\)
=> \(x^2=\frac{1}{5}\)
=> \(x=\sqrt{\frac{1}{5}}\)
Vậy f (x) có 1 nghiệm là \(x=\sqrt{\frac{1}{5}}\)
a, Ta có : \(f\left(x\right)-g\left(x\right)=h\left(x\right)\)hay
\(4x^2+3x+1-3x^2+2x-1=h\left(x\right)\)
\(\Rightarrow h\left(x\right)=x^2+5x\)
b, Đặt \(h\left(x\right)=x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy nghiệm của đa thức h(x) là x = -5 ; x = 0
Đặt \(k\left(x\right)=7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow7\left(x^2+2x+3x+6\right)=0\Leftrightarrow7\left(x+2\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
Vậy nghiệm của đa thức k(x) là x = -3 ; x = -2
xin lỗi mọi người 1 tý nha cái phần c) ý ạ đề thì vậy như thế nhưng có cái ở phần biểu thức ở dưới ý là
\(\left(\frac{3^2}{6}-81\right)^3\) chuyển thành \(\left(\frac{3^3}{6}81\right)^3\)
bị sai mỗi thế thôi ạ mọi người giúp em với ạ
a) A(x)= \(-2x^4+x^2-x-7-2\)
B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)
b) Thay số:A(x)
\(1^2-1-2-2\cdot1^4+7=3\)
B(x)
\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)
c)\(6x^3-2x^3-7x-12-2\)
a) \(2x^2-3x=0\)
\(\Leftrightarrow x\left(2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\end{matrix}\right.\)
c) \(x^6+1=0\)
\(\Leftrightarrow x^6=-1\)
Ta có : \(x^6\ge0\) với mọi x
Mà : -1 < 0
=> Vô nghiệm
d) \(x^3+2x=0\)
\(\Leftrightarrow x\left(x^2+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=-2\left(loại\right)\end{matrix}\right.\)
e) \(x^5+8x^2=0\)
\(\Leftrightarrow x^2\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^3+8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
f) \(x^2\left(x^2-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x^2-9=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
g) \(\left(x+\dfrac{1}{2}\right)\left(x^2-\dfrac{4}{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=0\\x^2-\dfrac{4}{5}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x^2=\dfrac{4}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\sqrt{\dfrac{4}{5}}\end{matrix}\right.\)
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
a) \(M=x^2-8x+2018=x^2-8x+16+2002=\left(x-4\right)^2+2002\)
\(\left(x-4\right)^2\ge0\forall x\Rightarrow\left(x-4\right)^2+2002\ge2002\)
Dấu " = " xảy ra <=> x - 4 = 0 => x = 4
Vậy MMin = 2002 khi x = 4
b) \(N=4x^2-12x+2019=4x^2-12x+9+2010=\left(2x-3\right)^2+2010\)
\(\left(2x-3\right)^2\ge0\forall x\Rightarrow\left(2x-3\right)^2+2010\ge2010\)
Dấu " = " xảy ra <=> 2x - 3 = 0 => x = 3/2
Vậy NMin = 2010 khi x = 3/2
c) \(P=x^2-x+2016=x^2-x+\frac{1}{4}+\frac{8063}{4}=\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\)
\(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{8063}{4}\ge\frac{8063}{4}\)
Dấu " = " xảy ra <=> x - 1/2 = 0 => x = 1/2
Vậy PMin = 8063/4 khi x = 1/2
d) \(Q=x^2-2x+y^2+4y+2020\)
\(Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+2015\)
\(Q=\left(x-1\right)^2+\left(y+2\right)^2+2015\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2+2015\ge2015\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy QMin = 2015 khi x = 1 ; y = -2
`@` `\text {Ans}`
`\downarrow`
`a)`
`6 - 2x=0`
`\Rightarrow 2x = 6-0`
`\Rightarrow 2x=6`
`\Rightarrow x=6/2`
`\Rightarrow x=3`
Vậy, nghiệm của đa thức là `x=3`
`b)`
\(x^{2023}+8x^{2020}?\)
\(x^{2023}+8x^{2020}=0\)
`\Rightarrow `\(x^{2020}\left(x^3+8\right)=0\)
`\Rightarrow `\(\left[{}\begin{matrix}x^{2020}=0\\x^3+8=0\end{matrix}\right.\)
`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)
`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x^3=\left(-2\right)^3\end{matrix}\right.\)
`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `x={0;-2}.`
a) Để tìm nghiệm của đa thức 6 - 2x, ta giải phương trình sau: 6 - 2x = 0
Đưa -2x về bên trái và 6 về bên phải: -2x = -6
Chia cả hai vế của phương trình cho -2: x = 3
Vậy nghiệm của đa thức 6 - 2x là x = 3.
b) Để tìm nghiệm của đa thức x^2023 + 8x^2020, ta đặt đa thức bằng 0: x^2023 + 8x^2020 = 0
Chúng ta có thể nhân chung cho x^2020 để thu được: x^2020(x^3 + 8) = 0
Điều này đồng nghĩa với: x^2020 = 0 hoặc x^3 + 8 = 0
Nghiệm của phương trình x^2020 = 0 là x = 0.
Đối với phương trình x^3 + 8 = 0, chúng ta có thể sử dụng công thức Viète để tìm nghiệm. Tuy nhiên, trong trường hợp này, chúng ta có thể nhận thấy rằng phương trình x^3 + 8 = 0 có một nghiệm rõ ràng là x = -2.
Vậy nghiệm của đa thức x^2023 + 8x^2020 là x = 0 và x = -2.