![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Linh chưa làm được à, căng hè. Trong lớp có ai làm được chưa
![](https://rs.olm.vn/images/avt/0.png?1311)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!
![](https://rs.olm.vn/images/avt/0.png?1311)
Lồn ***** Mẹ
Đéo trả lời đó! Lồn
Cặc ***** Hoc24.vn như Cấy Lồn
n=2
mình thử: 2n-\(\dfrac{1}{n-1}\)= 2*2-\(\dfrac{1}{2-1}\)=4-\(\dfrac{1}{1}\) =4-1=3
<=> để n là số nguyên <=> n=2
![](https://rs.olm.vn/images/avt/0.png?1311)
Chắc đề là tìm n thuộc Z để (2n+1)/(n+1) thuộc Z
\(\frac{2n+1}{n+1}=\frac{2\left(n+1\right)-1}{n+1}=2-\frac{1}{n+1}\)
\(Để\) \(\frac{2n+1}{n+1}\inℤ\)
\(\Leftrightarrow2-\frac{1}{n+1}\inℤ\)
\(\Leftrightarrow\frac{1}{n+1}\inℤ\)
Mà \(n\inℤ\)
\(\Rightarrow\)n là ước của 1
\(\Leftrightarrow n\in\left\{1;-1\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Với 2n+1 >= 0 => n>= -1/2
Để 2n + 1 (>00) chia hết cho n2 + n + 1 thì \(2n+1\ge n^2+n+1\Rightarrow n^2-n\le0\Rightarrow0\le n\le1\)mà n >= -1/2 và thuộc Z => n = 0;1. (1)
Với 2n+1 < 0 => n < -1/2
Để 2n + 1 (<0) chia hết cho n2 + n + 1 thì \(\left|2n+1\right|\ge n^2+n+1\Rightarrow-2n-1\ge n^2+n+1\Rightarrow n^2+3n+2\le0\Rightarrow\left(n+1\right)\left(n+2\right)\le0\Rightarrow-2\le n\le-1\)
mà n thuộc Z => n = -2;-1.
Thử vào ta được:
n | 2n+1 | n2 + n + 1 | Kết Luận | |
-2 | -3 | 3 | -3 chia hết cho 3 | TM |
-1 | -1 | 1 | -1 chia hết cho 1 | TM |
0 | 1 | 1 | 1 chia hết cho 1 | TM |
1 | 3 | 3 | 3 chia hết cho 3 | TM |
Vậy có 4 giá trị của n là {-2;-1;0;1} để 2n+1 chia hết cho n2 + n + 1.
Ta có \(M=\dfrac{2n+1}{n-1}\) xác định khi n - 1 ≠ 0 hay n ≠ 1
Vì n ϵ Z nên 2n + 1 ϵ Z và n - 1 ϵ Z, suy ra M ϵ Q
Vậy n ϵ {Z | n ≠ 1}