K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2023

A                    =  \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) 

\(\times\) \(xyz\)         =              \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)

\(\times\) \(xyz\) - A    =     \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\) 

A\(\times\)\(xyz\) - 1)  =    \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)

A                   =  (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\)   - \(xy^2z^3\)) : (\(xyz\) - 1)

Thay \(x\) = -1; \(y\) = -1; \(z\) = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

 

29 tháng 5 2023

A                    =  ��2�3 + �2�3�4+...+�2014�2015�2016 

× ���         =              �2�3�4+...+�2014�2015�2016 + �2015�2016�2017

× ��� - A    =     �2015�2016�2017 - ��2�3 

A×��� - 1)  =    �2015�2016�2017 - ��2�3

A                   =  (�2015 �2016 �2017   - ��2�3) : (��� - 1)

Thay  = -1;  = -1;  = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

Nhớ tick nha 

16 tháng 5 2023

A = \(xy^2z^3+x^2y^3z^4\) + \(x^{2014}y^{2015}z^{2016}\) 

Thay \(x=\) -1;  y = -1;  z = -1 vào A ta có:

A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016

A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1

A = 1 - 1 - 1

A = -1

 

 

16 tháng 5 2023

A = ��2�3+�2�3�4 + �2014�2015�2016 

Thay �= -1;  y = -1;  z = -1 vào A ta có:

A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016

A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1

A = 1 - 1 - 1

A = -1 

tick cho mik nha

26 tháng 12 2020

Ta có :\(\frac{1}{x}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{x}=\frac{y+z}{2yz}\)

=> 2yz = x(y + z)

=> 2yz - xy - xz = 0

=> (yz - xy) + (yz - xz) = 0

=> y(z - x) + z(y- x) = 0

=> y(z - x) = -z(y - x)

=> -y(x - z) = -z(y - x) 

=> \(\frac{-z}{-y}=\frac{x-z}{y-x}\Leftrightarrow\frac{z}{y}=\frac{x-z}{y-x}\) 

AH
Akai Haruma
Giáo viên
29 tháng 3 2021

Lời giải:

$A=\frac{(x+z)(z-y)(y-z)}{yz^2}=\frac{-(x+z)(y-z)^2}{yz^2}$

Vì $-x+y-z=0$ nên $-(x+z)=-y$

$y-z=x$

$\Rightarrow A=\frac{-yx^2}{yz^2}=\frac{-x^2}{z^2}$

Đến đây là kịch rồi bạn ạ, không tính được giá trị cụ thể của biểu thức A. Bạn xem lại đề.

 

19 tháng 3 2017

M=(1-z/x)(1-x/y)(1+y/z)

M=[(x-z)/x].[(y-x)/y].[(y+z)/z]

M=y/x . -z/y. x/z(thay x-z=y;y-x=-z;y+z=x)

M=-1