Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co 1/50 >1/100
1/51>1/100
1/52>1/100
.........
1/99>1/100
suy ra S=1/50 +1/51 +1/52 +.....+1/99>1/100*50=1/2 suy ra S>1/2
https://www.youtube.com/watch?v=fBjsHQKClNA&index=7&list=PLq0mRSDfY0BAMTu98fNHi-Lg_E9BWDYhV
Ta có: 3^2x.3^1+9^x+9^1=120-12=108
=3^2x . 3+9^x+9=108
3^2x . 3+9^x=108-9=99
3^2x . 3+(3^2)^x=99
3^2x .4=99
Cậu kiểm tra lại đề bài được ko
Gọi số cần tìm là abc
Theo đề bài ta có
abc=37(a+b+c)
100a+10b+c=37a+37b+37c
=>63a=27b+36c
63a=9(3b+4c)
7a=3b+4c
Đến đây ta thấy 3+4=7 nên a=b=c=1
b: Ta có: \(\dfrac{x+2}{5}=\dfrac{3-2x}{11}\)
\(\Leftrightarrow11x+22=15-10x\)
\(\Leftrightarrow21x=-7\)
hay \(x=-\dfrac{1}{3}\)
a - 3 chia hết cho a + 1
=> a + 1 - 4 chia hết cho a + 1
mà a + 1 chia hết cho a + 1 => 4 chia hết cho a + 1
=> a + 1 thuộc {1,2,4} (do a thuộc N)
=> a thuộc {0, 1, 3}
Ta đặt
\(A=\dfrac{7}{1\times2}+\dfrac{7}{2\times3}+...+\dfrac{7}{99\times100}\)
\(\dfrac{1}{7}\times A=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+....+\dfrac{1}{99\times100}\)
\(\dfrac{1}{7}\times A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\dfrac{1}{7}\times A=1-\dfrac{1}{100}\)
\(\dfrac{1}{7}\times A=\dfrac{99}{100}\)
\(A=\dfrac{99}{100}\div\dfrac{1}{7}\)
\(A=\dfrac{693}{100}\)
= 7.(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/99 - 1/100)
= 7.(1 - 1/100)
= 7 . 99/100
= 693/100
A = \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) + ...........+ \(\dfrac{1}{4^{100}}\)
A = \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\)+...+ \(\dfrac{1}{4^{99}}\)+ \(\dfrac{1}{4^{100}}\)
4 \(\times\) A = \(\dfrac{1}{4}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{4^3}\) +...+ \(\dfrac{1}{4^{99}}\)
4A - A = \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)
3A = \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)
A = ( \(\dfrac{1}{4}\) - \(\dfrac{1}{4^{100}}\)): 3
A = \(\dfrac{1}{12}\) - \(\dfrac{1}{3\times4^{100}}\)
Đặt A=1/4^2 +...+1/4^100
4A=1/4+...+1/4^99
4A-A=(1/4+...+1/4^99)-(1/4^2+...+1/4^100)
3A=1/4-1/4^100
A=(1/4-1/4^100)/3
Vậy...