Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)
\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)
mà\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)
10a + b chia hết cho 13
10a + b + 39b chia hết cho 13
10a + 40b chia hết cho 13
10(a + 4b) chia hết cho 13
Vì UCLN(10 ; 13) = 1
Do đó a + 4b chia hết cho 13
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b đó bạn)
Nếu (a + 4b) chia hết 13 thì 10.(a + 4b) cũng chia hết cho 13
Vì 39b chia hết cho 13
Nên 10.(a + 4b) - 39b cũng chia hết cho 13
Chứng tỏ 10a + b chia hết cho 13
(39b là mình lấy từ 10.(a + 4b) -10a + b )
Ta có:
3 . (a + 4b) + (10a + b) = 3a + 12b + 10a + b = (3a + 10a) + (12b + b) = 13a + 13b = 13 . (a + b) chia hết cho 13.
Mà a + 4b chia hết cho 13 nên 3 . (a + 4b) chia hết cho 13 mà tổng 3 . (a + 4b) + (10a + b) cũng chia hết cho 13
suy ra 10a + b chia hết cho 13
Ta có:
a + 4b chia hết cho 13
=>10.(a + 4b) chia hết cho 13
=>10a+40b chia hết cho 13
Mà 39b chia hết cho 13
=> (10a+40b)-39b chia hết cho 13
=>10a+b chia hết cho 13
Vậy 10a+b chia hết cho 13
Ta có : a + 4b chia hết cho 13 => 3.(a + 4b )
=> 3a + 12b
Xét tổng :
( 3a + 12b ) + ( 10a +b )
= 3a +10a +12b +b
= 13a +13b ( chia hết cho 13 )
Mà 3a + 12b chia hết cho 13 => 10a + b chia hết cho 13
Đặt A = a + 4b; B = 10a + b
Xét hiệu: 10A - B = 10.(a + 4b) - (10a + b)
= 10a + 40b - 10a - b
= 39b
Do A chia hết cho 13 nên 10A chia hết cho 13 mà 39b chia hết cho 13
Do đó, B chia hết cho 13 hay 10a + b chia hết cho 13 (đpcm)
a) 2x+3y chia hết cho 17 => 4(2x+3y) chia hết cho 17
=> 8x+12y chia hết cho 17
Ta có : 8x+12y+9x+5y=17x+17y=17(x+y) chia hết cho 17
b) a+4b chia hết cho 13 => 3(a+4b) chia hết cho 13 => 3a+12b chia hết cho 13
=> (3a+12b)+(10a+b)=13a+13b=13(a+b) chia hết cho 13
c) 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17 => 24a+16b chia hết cho 17
Ta có : (24a+16b)+(10a+b)=34a+17b chia hết cho 17
Do \(\left(10a+b\right)⋮13\Rightarrow10a+b=13k\left(k\in N\right)\)
\(\Rightarrow b=13k-10a\)
\(\Rightarrow a+4b=a+4.\left(13k-10a\right)\)
\(=a+52k-40a\)
\(=52k-39a\)
\(=13\left(4k-3a\right)⋮13\)
Vậy \(\left(10a+b\right)⋮13\Rightarrow\left(a+4b\right)⋮13\)
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
Bạn xem trong câu hỏi tương tự, nhiều bạn đã hỏi câu này rồi. Dưới đây là một lời giải:
Ta có:
4(10a + b) - (a + 4b) = 39a
Hiệu vế trái chia hết cho 39 nên chia hết cho 13, mà theo giả thiết 1a + b chia hết cho 13 nên số (a + 4b) cũng chia hết cho 13.