K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2023

/////////////////////////////////////////////////////////////////////////'

 

13 tháng 4 2023

1/2^2+1/3^2+.....+1/2010^2

ko tính đc nhưng có thể xét lớn hơn hoặc nhỏ hơn bao nhiêu

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

20 tháng 9 2017

a) A = 21 + 22 + 23 + 24 +...+ 22010

=> A = (2 + 22) + 22.(2 + 22) + ... + 22008.(2 + 22)

=> A = 6 + 22.6 + ... + 22008.6

=> A = 6 . (1 + 22 + ... + 22008\(⋮\)3 => A \(⋮\)3.

A = 21 + 22 + 23 +...+ 22010

=> A = (21 + 22 + 23) + ... + (22008 + 22009 + 22010)

=> A = 14 + ... + 22007.(2 + 22 + 23)

=> A = 14 + ... + 22007.14

=> A = 14.(1+...+22007\(⋮\)7 => A \(⋮\)7

b) Để B chia hết cho 4 thì bạn gộp 2 số lại ( được 1 thừa số là 12 ) => B chia hết cho 4.

Để B chia hết cho 7 thì bạn gộp 3 số lại ( được 1 thừa số là 39 ) => B chia hết cho 13.

Sorry, bài B không làm chặt chẽ được vì mình bận đi học rồi.

Chúng bạn học tốt.

5 tháng 1 2021

cho mình hỏi bạn Phúc lí do vì sao lại là 2 mũ 2008

21 tháng 10

216,729,

 

 

9 tháng 8 2017

S=1+7+7^2+7^3+...+7^100+7^101

   =(1+7)+7^2(1+7)+...+7^100(1+7)

   =8+7^2.8+...+7^100.8

   =8.(1+7^2+...+7^100) chia hết cho 8 

Vậy S chia hết cho 8

     

9 tháng 8 2017

a.S=4+4^2+4^3+4^4+...+4^99+4^100 chia hết cho 5

   S=(4+4^2)+(4^3+4^4)+...+(4^99+4^100)

   S=20+4^2*20+...+4^98

   S=20*(1+4^2+...+4^98) chia hết cho 5(đpcm)

 b.S=2+2^2+2^3+2^4+...+2^2009+2^2010CHIA HẾT CHO 6

    S=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)

    S=6+2^2.*6+...+2^2008

    S=6*(1+2^2+...+2^2008)CHIA HẾT CHO 6

  

    

10 tháng 6 2018

(1981 x 1982 - 990) : (1980 x 1982 + 992)

=(1980 x 1982+1982 -990) : (1980 x 1982 +992)

=(1980 x 1982 + 992) : ( 1980 x 1982 + 992)

=1

16 tháng 7 2019

B=[(45.79+45.21)]:90-5^2]:5+2^3                                  B=[(45.79+45.21):90-25]:5+8                                      B=[(45.(79+21):65]:13                                                  B=[(45.100):65]:13                                                        B=[4500:65]:13                                                           B=4500:65:13                                                       

6 tháng 1 2021

Úi gời cơi cộng chấm chấm chấm :)))

+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2009}.3\)

\(A=3\left(2+2^3+...+2^{2010}\right)⋮3\)

-> Đpcm

+ Ta có: \(A=2+2^2+2^3+2^4+...+2^{2010}\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+....+2^{2008}\left(1+2+2^2\right)\)

\(A=2.7+2^4.7+...+2^{2008}.7\)

\(A=7\left(2+2^4+...+2^{2008}\right)⋮7\)

-> Đpcm

24 tháng 12 2023

\(A=2^1+2^2+...+2^{2010}\)

\(=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2+2^2+2^3+...+2^{2010}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{2008}\right)⋮7\)

24 tháng 12 2023

A=2\(^1\)+2\(^2\)+...+2\(^{2010}\)

=(2\(^1\)+2\(^2\))+(2\(^3\)+2\(^4\))+...+(2\(^{2009}\)+2\(^{2010}\))

=2(1+2)+2\(^3\)(1+2)+...+2\(^{2009}\)(1+2)

=3(2+2\(^3\)+...+2\(^{2009}\))⋮3