K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2023

Ta có : 1-1/2+1/3-1/4+1/5-1/6

           = 1+1/2+1/3+1/4+1/5+1/6-2.(1/2+1/4+1/6)

           = 1+1/2+1/3+1/4+1/5+1/6-(1+1/2+1/3)

           =1+1/2+1/3+1/4+1/5+1/6-1-1/2-1/3

           =1/4+1/5+1/6

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

7 tháng 5 2019

Ta có: 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)

Ta có:\(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)

Tự giải tiếp hay nhờ thầy cô giảng tiếp đi nha bn, mỏi tay nên ko thể làm đc nữa !!

25 tháng 8 2017

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{50}\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)

\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

1 tháng 7 2020

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{48.49}\)

\(A< 1-\frac{1}{49}=\frac{48}{49}< \frac{48}{48}< \frac{40}{48}=\frac{5}{6}\)

26 tháng 4 2016

a) ta có :1/5^2<1/4.5=1/4-1/5

1/6^2<1/5.6=1/5-1/6

.................

1/100^2<1/99.100=1/99-1/100

=>1/5^2+1/6^2+1/7^2+......+1/100^2 <1/4-1/100=6/25<1/4(1)

ta lại có:1/5^2>1/5.6=1/5-1/6

1/6^2>1/6.7=1/6-1/7

.................

1/100^2>1/100.101=1/100-1/101

=>1/5^2+1/6^2+1/7^2+......+1/100^2>1/5-1/101=96/505>1/6(2)

từ (1)(2) suy ra 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4

26 tháng 4 2016

b)ta có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)>(1/20+1/20+...+1/20)(10 phân số 1/20)+(1/30+1/30+...+1/30)(10 phân số 1/30)+(1/40+1/40+...+1/40)(10 phân số 1/40)+(1/50+1/50+...+1/50)(10 phân số 1/50)+(1/60+1/60+...+1/60)(10 phân số 1/60)=1/2+1/3+1/4+1/5+1/6=29/20>4/3(1)

ta lại có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)<(1/11+1/11+...+1/11)(10 phân số 1/11)+(1/21+1/21+...+1/21)(10 phân số 1/21)+(1/31+1/31+...+1/31)(10 phân số 1/31)+(1/41+1/41+...+1/41)(10 phân số 1/41)+(1/51+1/51+...+1/51)(10 phân số 1/51)+(1/61+1/61+...+1/61)(10phân số 1/61)  =10/11+10/21+10/31+10/41+10/51+10/61=2,311777327<5/2(2)

từ (1)(2)=>4/3<1/11+1/12+....+1/70<5/2