Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z => 6n - 1 chia hết 3n + 2
=> 2(3n+2) - 5 chia hết 3n + 2
=> 5 chia hết 3n + 2
=> 3n + 2 thuộc Ư(5)=.............
=> ............Còn lại tự làm nha!
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời
ta có
3n+2 \(\vdots \)3n+2 \(\Rightarrow \) 2.(3n+2) \(\vdots\)3n+2
Suy ra 6n+4 chia hết cho 3n+2 mà 6n-1 cũng chia hết cho 3n+2 suy ra 6n+4-(6n+1) chia hết cho 3n+2
Suy ra 3 chia hết cho 3n+2 suy ra 3n+2 thuộc ước của 3. suy ra tìm n sau đó thay n vô sẽ tìm được giá trị nhỏ nhất !
a) Để A có giá trị nguyên
suy ra (6n - 1) chia hết cho (3n + 2)
Vì (3n + 2) chia hết cho (3n + 2) suy ra 2(3n + 2) chia hết cho (3n + 2) hay (6n + 4) chia hết cho (3n + 2)
suy ra [(6n - 1) - (6n + 4)] chia hết cho (3n + 2)
(6n - 1 - 6n - 4) chia hết cho (3n + 2)
5 chia hết cho (3n + 2)
hay 3n + 2 thuộc Ư(5). Mà Ư(5) thuộc {1; -1; 5; -5}
Ta có bảng sau:
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 ko thuộc Z (loại) | -1 | 1 | -7/3 ko thuộc Z (loại) |
Vậy n = 1 hoặc n = -1
b) Ta có: A=6n - 1/3n + 2 = 6n + 4 - 5/3n + 2 = 2(3n + 2) - 5/3n + 2 = 2 - 5/3n + 2
Để A min suy ra 5/3n + 2 max
Vì 5 ko thay đổi suy ra 3n + 2 min và 5/3n + 2 là số âm nhỏ nhất
Suy ra 3n + 2 là số âm lớn nhất nên 3n + 2 = -1
3n = -1 - 2 = -3
n = -3 : 3 = -1
Vậy min A = -7 tại n = -1
Nhớ k mình đúng nhé!!!Thanks các bạn nhiều
a, Để A thuộc z thì 4n + 1 chia hết cho 2n + 3
Mà 2n + 3 chia hết cho 2n + 3 => 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 2(2n + 3) chia hết cho 2n + 3
=> 4n + 1 - 4n - 6 chia hết cho 2n + 3
=> -5 chia hết cho 2n + 3
=> 2n + 3 thuộc {-1; 1; -5; 5}
=> 2n thuộc {-4; -2; -8; 2}
=> n thuộc {-2; -1; -4; 1}
b, Ta có:
\(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
+ Để A nhỏ nhất thì \(\frac{5}{2n+3}\)lớn nhất => 2n + 3 nhỏ nhất dương (Vì 2n + 3 âm thì 5/2n+3 âm, 2n + 3 khác 0)
=> 2n + 3 = 1
=> 2n = -2
=> n = -1
+ Lớn nhất xét tương tự
De 6n+5/2n-1 E Z
Thi 6n+5 chia het cho 2n-1
=>3(2n-1)+8 chia het cho 2n -1
Ma 3(2n-1) chia het cho 2n-1
=> 8 chia het cho 2n-1
=>2n-1 E Ư(8),Ư(8)={1;2;4;8;-1;-2;-4;-8}
=> 2n-1 E{1;2;4;8;-1;-2;-4;-8}
=> 2n-1. n
1. 1
2. 3/2
4. 5/2
8. 9/2
-1. 0
-2. -1/2
-4. -3/2
-8. -7/2
Vi n E Z=> nE{1;0}
Ung ho nhe
Ta có :
6n + 5 = 6n + 3 + 2 = 3 . ( 2n + 1 ) + 2
vì 2n + 1 \(⋮\)2n + 1 \(\Rightarrow\)3 . ( 2n + 1 ) \(⋮\)2n + 1 nên để 6n + 5 \(⋮\)2n + 1 thì 2 \(⋮\)2n + 1
\(\Rightarrow\)2n + 1 \(\in\)Ư ( 2 ) = { 1 ; -1 ; 2 ; -2 }
Lập bảng ta có :
2n+1 | 1 | -1 | 2 | -2 |
n | 0 | -1 | 1/2 | -3/2 |
Vì n thuộc Z nên n \(\in\){ 0 ; -1 }
vậy n \(\in\){ 0 ; -1 }
câu hỏi đọc ko hiểu
gtnn là gì vậy bạn?