Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90
2A = 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100
2A - A = ( 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + .... + 2^90 + 2^100 ) - ( 2^3 + 2^4+ 2^5+ 2^6 + 2^7 + ... + 2^90 )
A = 2^100 - 2^3
B = 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50
5B = 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51
5B - B = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 + .... + 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 + 5^4 + .... + 5^50 )
4B = 5^51 - 1
B = 5^51 - 1 / 4
a: =>x-2/5=3/4:1/3=3/4*3=9/4
=>x=9/4+2/5=45/20+8/20=53/20
b: =>x-2/3=7/3:4/5=7/3*5/4=35/12
=>x=35/12+2/3=43/12
c: 1/3(x-2/5)=4/5
=>x-2/5=4/5*3=12/5
=>x=12/5+2/5=14/5
d: =>2/3x-1/3-1/4x+1/10=7/3
=>5/12x-7/30=7/3
=>5/12x=7/3+7/30=77/30
=>x=77/30:5/12=154/25
e: \(\Leftrightarrow x\cdot\dfrac{3}{7}-\dfrac{2}{7}+\dfrac{1}{2}-\dfrac{5}{4}x+\dfrac{5}{2}=0\)
=>\(x\cdot\dfrac{-23}{28}=\dfrac{2}{7}-3=\dfrac{-19}{7}\)
=>x=19/7:23/28=76/23
f: =>1/2x-3/2+1/3x-4/3+1/4x-5/4=1/5
=>13/12x=1/5+3/2+4/3+5/4=257/60
=>x=257/65
i: =>x^2-2/5x-x^2-2x+11/4=4/3
=>-12/5x=4/3-11/4=-17/12
=>x=17/12:12/5=85/144
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
a) \(\frac{-2}{3}x+\frac{1}{5}=\frac{1}{10}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{1}{10}-\frac{1}{5}\)
\(\Leftrightarrow\frac{-2}{3}x=\frac{-1}{10}\)
\(\Leftrightarrow x=\frac{-1}{10}\div\frac{-2}{3}\)
\(\Leftrightarrow x=\frac{3}{20}\)
1:
a: =23/27-11/17+4/27+28/17
=23/27+4/27+28/17-11/17
=1+1=2
b: \(=\dfrac{2}{3}\cdot\left(\dfrac{7}{9}+\dfrac{2}{9}\right)-\dfrac{2}{9}\)
=2/3-2/9
=6/9-2/9
=4/9
c: \(=\dfrac{11}{5}\cdot\dfrac{7}{3}-\dfrac{1}{3}\cdot\dfrac{11}{5}\)
=11/5(7/3-1/3)
=11/5*2
=22/5
d: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{2024}{2023}=\dfrac{2024}{2}=1012\)
e: \(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2022}{2023}=\dfrac{1}{2023}\)
a. \(\dfrac{5}{17}+\dfrac{-5}{34}.\dfrac{2}{5}\)
= \(\dfrac{5}{17}+\dfrac{1}{-17}\)
= \(\dfrac{5}{17}+\dfrac{-1}{17}\)
= \(\dfrac{4}{17}\)
b. \(\dfrac{1}{2}.\dfrac{5}{6}+\dfrac{2}{3}.\dfrac{3}{4}\)
= \(\dfrac{5}{12}+\dfrac{1}{2}\)
= \(\dfrac{5}{12}+\dfrac{6}{12}\)
= \(\dfrac{11}{12}\)
c. \(\left(\dfrac{-2}{5}+\dfrac{1}{3}\right).\left(\dfrac{3}{2}-\dfrac{3}{7}\right)\)
= \(\left(\dfrac{-6}{15}+\dfrac{5}{15}\right).\left(\dfrac{21}{14}-\dfrac{6}{14}\right)\)
= \(\dfrac{-1}{15}.\dfrac{15}{14}\)
= \(\dfrac{-1}{14}\)
d. \(\left(1+\dfrac{1}{2}\right).\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{4}\right)\)
= \(\left(\dfrac{2}{2}+\dfrac{1}{2}\right).\left(\dfrac{3}{3}+\dfrac{1}{3}\right).\left(\dfrac{4}{4}+\dfrac{1}{4}\right)\)
= \(\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}\)
= \(\dfrac{5}{2}\)
a: \(=\dfrac{5}{34}\cdot\dfrac{2}{5}=\dfrac{2}{34}=\dfrac{1}{17}\)
b: \(=\dfrac{5}{12}+\dfrac{6}{12}=\dfrac{11}{12}\)
c: \(=\dfrac{-6+5}{15}\cdot\dfrac{21-6}{15}=-\dfrac{1}{15}\)
1-(\(\dfrac{1}{5}\)+\(\dfrac{1}{2}\))
=1-(\(\dfrac{2}{10}\)+\(\dfrac{5}{10}\))
=1-\(\dfrac{7}{10}\)
=\(\dfrac{10}{10}\)-\(\dfrac{7}{10}\)
=\(\dfrac{3}{10}\)
1-1/5-1/2
=10/10-2/10-5/10
=10-2-5/10
=3/10