Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho phân số A=n+1/n-2
tìm n thuộc z để A thuộc giá trị nguyên N
tìm n thuộc z để A có giá trị lớn nhất
a, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n - 2 | 1 | -1 | 3 | -3 |
n | 3 | 1 | 5 | -1 |
b, Ta có : \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{3}{n-2}+1\ge1\)
Dấu ''='' xảy ra <=> n - 2 = 1 <=> n = 3
Vậy GTLN A là 1 khi n = 3
a) Để a là phân số thì \(n+4\ne0\Rightarrow n\ne-4\)
b) \(a=\frac{n+9}{n+4}=\frac{n+4+5}{n+4}=1+\frac{5}{n+4}\)
\(a=\frac{1}{2}\Rightarrow1+\frac{5}{n+4}=\frac{1}{2}\)
\(\Rightarrow\frac{5}{n+4}=\frac{1}{2}-1=-\frac{1}{2}\)
\(\frac{5}{n+4}=\frac{5}{-10}\)
\(\Rightarrow n+4=-10\Rightarrow n=-14\)
c) Để a là số nguyên thì \(\frac{5}{n+4}+1\) có giá trị nguyên
\(\Rightarrow\frac{5}{n+4}\) có giá trị nguyên
\(\Rightarrow5⋮n+4\)
Vì \(n+4\inℤ\) nên \(n+4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;1;-9\right\}\)
a, để a là phân số thì mẫu số phải khác 0
vây nên n+4 phải khác 0 suy ra n phải khác -4
b, n+9/n+4=1/2 suy ra 2n+18=n+4 suy ra 2n-n=4-18 suy ra n=-14
c, a=n+9/n+4 có g trị nguyên
suy ra n+9 chia hết n+4
suy ra n+4+5 chia hết cho n+4
suy ra 5 chia hết cho n+4 hay n+4 thuộc ư(5)
suy ra n+4 thuộc (1;5;-1;-5)
suy ra n thuộc (-3;1;-5;-9)
chúc bạn hok tốt
ta có \(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\)
Để A nguyên thì n-2 là ước của 3 hay
\(n-2\in\left\{\pm1,\pm3\right\}\Leftrightarrow n\in\left\{-1,1,3,5\right\}\)
Để A có giá trị lớn nhất thì \(\frac{3}{n-2}\) đạt giá trị lớn nhất.
khi \(n-2>0\) và đạt giá trị nhỏ nhất
hay n=3.
\(A=\dfrac{n^2-n+5}{n-1}=\dfrac{n\left(n-1\right)}{n-1}+\dfrac{5}{n-1}=n+\dfrac{5}{n-1}\left(ĐKXĐ:x\ne1\right)\)
Để A nguyên thì \(5⋮n-1\) hay \(n-1\inƯ\left(5\right)\)
Xét bảng :
Vậy để A nguyên thì \(n\in\left\{-4;0;2;6\right\}\)
giúp tớ với